Moduli spaces of coherent systems of small slope on algebraic curves.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Taylor & Francis
Google Scholar
Research Projects
Organizational Units
Journal Issue
Let C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E, V ), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the geometry of the moduli space of coherent systems for 0 < d ≤ 2n. We show that these spaces are irreducible whenever they are non-empty and obtain necessary and sufficient conditions for non-emptiness.
Atiyah, M. F. (1957). Vector bundles over an elliptic curve. Proc. London Math. Soc. 7(3):414–452. Bhosle, U. N., Brambila-Paz, L., Newstead, P. E. (2008). On coherent systems of type (n, d, n+1) on Petri curves.Manuscripta Math. 126:409–441. Bradlow, S. B., García-Prada, O. (2002). An application of coherent systems to a Brill–Noether problem. J. Reine Angew. Math. 551:123–143. Bradlow, S. B., García-Prada, O., Mercat, V., Muñoz, V., Newstead, P. E. (2007). On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J.Math. 18:411–453. Bradlow, S. B., García-Prada, O., Muñoz, V., Newstead, P. E. (2003). Coherent Systems and Brill–Noether theory. Internat. J. Math. 14:683–733. Brambila-Paz, L. (2008). Non-emptiness of moduli spaces of coherent systems. Internat.J. Math. 19:777–799. Brambila-Paz, L., Grzegorczyk, I., Newstead, P. E. (1997). Geography of Brill–Noether loci for small slopes. J.Algebraic Geometry 6:645–669. He, M. (1998). Espaces de modules de systèmes cohérents. Internat. J. Math. 9:545–598. King, A. D., Newstead, P. E. (1995). Moduli of Brill–Noether pairs on algebraic curves. Internat. J. Math. 6:733–748. Lange, H., Newstead, P. E. (2004). Coherent systems of genus 0. Internat. J. Math.15:409–424. Lange, H., Newstead, P. E. (2005). Coherent systems on elliptic curves. Internat. J.Math. 16:787–805. Lange, H., Newstead, P. E. (2007). Coherent systems of genus 0 II: existence results for k ≥ 3. Internat. J. Math. 18:363–393. Le Potier, J. (1995). Faisceaux semi-stables et systèmes cohérents. In: Hitchin, N. J.,Newstead, P. E., Oxbury, W. M., eds. Vector Bundles in Algebraic Geometry, Durham 1993. LMS Lecture Notes Series. Vol. 208. Cambridge:Cambridge University Press,pp. 179–239. Mercat, V. (1999). Le problème de Brill–Noether pour des fibrés stables de petite pente.J. Reine Angew. Math. 506:1–41. Mercat, V. (2001). Fibrés stables de pente 2. Bull. London Math. Soc. 33:535–542. Narasimhan, M. S., Ramanan, S. (1965). Deformation of the moduli space of vector bundles over an algebraic curve. Ann. Math. 82(2):540–567. Paranjape, K., Ramanan, S. (1988). On the canonical ring of a curve. Algebraic Geometry and Commutative Algebra, Vol. II. Kinokuniya, Tokyo, pp. 503–516. Raghavendra, N., Vishwanath, P. A. (1994). Moduli of pairs and generalized theta divisors. Tôhoku Math. J. 46:321–340. Teixidor i. Bigas, M. (2008). Existence of coherent systems II. Internat. J. Math 19:1269–1283.