Publication:
Moduli spaces of coherent systems of small slope on algebraic curves.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E, V ), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the geometry of the moduli space of coherent systems for 0 < d ≤ 2n. We show that these spaces are irreducible whenever they are non-empty and obtain necessary and sufficient conditions for non-emptiness.
Description
Keywords
Citation
Atiyah, M. F. (1957). Vector bundles over an elliptic curve. Proc. London Math. Soc. 7(3):414–452. Bhosle, U. N., Brambila-Paz, L., Newstead, P. E. (2008). On coherent systems of type (n, d, n+1) on Petri curves.Manuscripta Math. 126:409–441. Bradlow, S. B., García-Prada, O. (2002). An application of coherent systems to a Brill–Noether problem. J. Reine Angew. Math. 551:123–143. Bradlow, S. B., García-Prada, O., Mercat, V., Muñoz, V., Newstead, P. E. (2007). On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J.Math. 18:411–453. Bradlow, S. B., García-Prada, O., Muñoz, V., Newstead, P. E. (2003). Coherent Systems and Brill–Noether theory. Internat. J. Math. 14:683–733. Brambila-Paz, L. (2008). Non-emptiness of moduli spaces of coherent systems. Internat.J. Math. 19:777–799. Brambila-Paz, L., Grzegorczyk, I., Newstead, P. E. (1997). Geography of Brill–Noether loci for small slopes. J.Algebraic Geometry 6:645–669. He, M. (1998). Espaces de modules de systèmes cohérents. Internat. J. Math. 9:545–598. King, A. D., Newstead, P. E. (1995). Moduli of Brill–Noether pairs on algebraic curves. Internat. J. Math. 6:733–748. Lange, H., Newstead, P. E. (2004). Coherent systems of genus 0. Internat. J. Math.15:409–424. Lange, H., Newstead, P. E. (2005). Coherent systems on elliptic curves. Internat. J.Math. 16:787–805. Lange, H., Newstead, P. E. (2007). Coherent systems of genus 0 II: existence results for k ≥ 3. Internat. J. Math. 18:363–393. Le Potier, J. (1995). Faisceaux semi-stables et systèmes cohérents. In: Hitchin, N. J.,Newstead, P. E., Oxbury, W. M., eds. Vector Bundles in Algebraic Geometry, Durham 1993. LMS Lecture Notes Series. Vol. 208. Cambridge:Cambridge University Press,pp. 179–239. Mercat, V. (1999). Le problème de Brill–Noether pour des fibrés stables de petite pente.J. Reine Angew. Math. 506:1–41. Mercat, V. (2001). Fibrés stables de pente 2. Bull. London Math. Soc. 33:535–542. Narasimhan, M. S., Ramanan, S. (1965). Deformation of the moduli space of vector bundles over an algebraic curve. Ann. Math. 82(2):540–567. Paranjape, K., Ramanan, S. (1988). On the canonical ring of a curve. Algebraic Geometry and Commutative Algebra, Vol. II. Kinokuniya, Tokyo, pp. 503–516. Raghavendra, N., Vishwanath, P. A. (1994). Moduli of pairs and generalized theta divisors. Tôhoku Math. J. 46:321–340. Teixidor i. Bigas, M. (2008). Existence of coherent systems II. Internat. J. Math 19:1269–1283.
Collections