Moduli spaces of coherent systems of small slope on algebraic curves.
dc.contributor.author | Bradlow, S.B. | |
dc.contributor.author | García Prada, O. | |
dc.contributor.author | Mercat, V. | |
dc.contributor.author | Muñoz, Vicente | |
dc.date.accessioned | 2023-06-20T03:32:03Z | |
dc.date.available | 2023-06-20T03:32:03Z | |
dc.date.issued | 2009 | |
dc.description.abstract | Let C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E, V ), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the geometry of the moduli space of coherent systems for 0 < d ≤ 2n. We show that these spaces are irreducible whenever they are non-empty and obtain necessary and sufficient conditions for non-emptiness. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Vector Bundles on | |
dc.description.sponsorship | Royal Society of London for an International | |
dc.description.sponsorship | National Science Foundation | |
dc.description.sponsorship | MEC | |
dc.description.sponsorship | NSF | |
dc.description.sponsorship | CIMAT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20885 | |
dc.identifier.doi | 10.1080/00927870902747464 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.officialurl | http://www.tandfonline.com/doi/pdf/10.1080/00927870902747464 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43762 | |
dc.issue.number | 8 | |
dc.journal.title | Communications in Algebra | |
dc.language.iso | eng | |
dc.page.final | 2678 | |
dc.page.initial | 2649 | |
dc.publisher | Taylor & Francis | |
dc.relation.projectID | 15646 | |
dc.relation.projectID | 2005/R3 | |
dc.relation.projectID | DMS-0072073 | |
dc.relation.projectID | MTM2004-07090-C03-01 | |
dc.relation.projectID | DMS-0111298 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Algebraic curves | |
dc.subject.keyword | Brill–Noether loci | |
dc.subject.keyword | Coherent systems | |
dc.subject.keyword | Moduli of vector bundles. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Moduli spaces of coherent systems of small slope on algebraic curves. | |
dc.type | journal article | |
dc.volume.number | 37 | |
dcterms.references | Atiyah, M. F. (1957). Vector bundles over an elliptic curve. Proc. London Math. Soc. 7(3):414–452. Bhosle, U. N., Brambila-Paz, L., Newstead, P. E. (2008). On coherent systems of type (n, d, n+1) on Petri curves.Manuscripta Math. 126:409–441. Bradlow, S. B., García-Prada, O. (2002). An application of coherent systems to a Brill–Noether problem. J. Reine Angew. Math. 551:123–143. Bradlow, S. B., García-Prada, O., Mercat, V., Muñoz, V., Newstead, P. E. (2007). On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J.Math. 18:411–453. Bradlow, S. B., García-Prada, O., Muñoz, V., Newstead, P. E. (2003). Coherent Systems and Brill–Noether theory. Internat. J. Math. 14:683–733. Brambila-Paz, L. (2008). Non-emptiness of moduli spaces of coherent systems. Internat.J. Math. 19:777–799. Brambila-Paz, L., Grzegorczyk, I., Newstead, P. E. (1997). Geography of Brill–Noether loci for small slopes. J.Algebraic Geometry 6:645–669. He, M. (1998). Espaces de modules de systèmes cohérents. Internat. J. Math. 9:545–598. King, A. D., Newstead, P. E. (1995). Moduli of Brill–Noether pairs on algebraic curves. Internat. J. Math. 6:733–748. Lange, H., Newstead, P. E. (2004). Coherent systems of genus 0. Internat. J. Math.15:409–424. Lange, H., Newstead, P. E. (2005). Coherent systems on elliptic curves. Internat. J.Math. 16:787–805. Lange, H., Newstead, P. E. (2007). Coherent systems of genus 0 II: existence results for k ≥ 3. Internat. J. Math. 18:363–393. Le Potier, J. (1995). Faisceaux semi-stables et systèmes cohérents. In: Hitchin, N. J.,Newstead, P. E., Oxbury, W. M., eds. Vector Bundles in Algebraic Geometry, Durham 1993. LMS Lecture Notes Series. Vol. 208. Cambridge:Cambridge University Press,pp. 179–239. Mercat, V. (1999). Le problème de Brill–Noether pour des fibrés stables de petite pente.J. Reine Angew. Math. 506:1–41. Mercat, V. (2001). Fibrés stables de pente 2. Bull. London Math. Soc. 33:535–542. Narasimhan, M. S., Ramanan, S. (1965). Deformation of the moduli space of vector bundles over an algebraic curve. Ann. Math. 82(2):540–567. Paranjape, K., Ramanan, S. (1988). On the canonical ring of a curve. Algebraic Geometry and Commutative Algebra, Vol. II. Kinokuniya, Tokyo, pp. 503–516. Raghavendra, N., Vishwanath, P. A. (1994). Moduli of pairs and generalized theta divisors. Tôhoku Math. J. 46:321–340. Teixidor i. Bigas, M. (2008). Existence of coherent systems II. Internat. J. Math 19:1269–1283. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1