Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Moduli spaces of coherent systems of small slope on algebraic curves.

dc.contributor.authorBradlow, S.B.
dc.contributor.authorGarcía Prada, O.
dc.contributor.authorMercat, V.
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T03:32:03Z
dc.date.available2023-06-20T03:32:03Z
dc.date.issued2009
dc.description.abstractLet C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E, V ), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the geometry of the moduli space of coherent systems for 0 < d ≤ 2n. We show that these spaces are irreducible whenever they are non-empty and obtain necessary and sufficient conditions for non-emptiness.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipVector Bundles on
dc.description.sponsorshipRoyal Society of London for an International
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipMEC
dc.description.sponsorshipNSF
dc.description.sponsorshipCIMAT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20885
dc.identifier.doi10.1080/00927870902747464
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/00927870902747464
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43762
dc.issue.number8
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final2678
dc.page.initial2649
dc.publisherTaylor & Francis
dc.relation.projectID15646
dc.relation.projectID2005/R3
dc.relation.projectIDDMS-0072073
dc.relation.projectIDMTM2004-07090-C03-01
dc.relation.projectIDDMS-0111298
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordAlgebraic curves
dc.subject.keywordBrill–Noether loci
dc.subject.keywordCoherent systems
dc.subject.keywordModuli of vector bundles.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleModuli spaces of coherent systems of small slope on algebraic curves.
dc.typejournal article
dc.volume.number37
dcterms.referencesAtiyah, M. F. (1957). Vector bundles over an elliptic curve. Proc. London Math. Soc. 7(3):414–452. Bhosle, U. N., Brambila-Paz, L., Newstead, P. E. (2008). On coherent systems of type (n, d, n+1) on Petri curves.Manuscripta Math. 126:409–441. Bradlow, S. B., García-Prada, O. (2002). An application of coherent systems to a Brill–Noether problem. J. Reine Angew. Math. 551:123–143. Bradlow, S. B., García-Prada, O., Mercat, V., Muñoz, V., Newstead, P. E. (2007). On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J.Math. 18:411–453. Bradlow, S. B., García-Prada, O., Muñoz, V., Newstead, P. E. (2003). Coherent Systems and Brill–Noether theory. Internat. J. Math. 14:683–733. Brambila-Paz, L. (2008). Non-emptiness of moduli spaces of coherent systems. Internat.J. Math. 19:777–799. Brambila-Paz, L., Grzegorczyk, I., Newstead, P. E. (1997). Geography of Brill–Noether loci for small slopes. J.Algebraic Geometry 6:645–669. He, M. (1998). Espaces de modules de systèmes cohérents. Internat. J. Math. 9:545–598. King, A. D., Newstead, P. E. (1995). Moduli of Brill–Noether pairs on algebraic curves. Internat. J. Math. 6:733–748. Lange, H., Newstead, P. E. (2004). Coherent systems of genus 0. Internat. J. Math.15:409–424. Lange, H., Newstead, P. E. (2005). Coherent systems on elliptic curves. Internat. J.Math. 16:787–805. Lange, H., Newstead, P. E. (2007). Coherent systems of genus 0 II: existence results for k ≥ 3. Internat. J. Math. 18:363–393. Le Potier, J. (1995). Faisceaux semi-stables et systèmes cohérents. In: Hitchin, N. J.,Newstead, P. E., Oxbury, W. M., eds. Vector Bundles in Algebraic Geometry, Durham 1993. LMS Lecture Notes Series. Vol. 208. Cambridge:Cambridge University Press,pp. 179–239. Mercat, V. (1999). Le problème de Brill–Noether pour des fibrés stables de petite pente.J. Reine Angew. Math. 506:1–41. Mercat, V. (2001). Fibrés stables de pente 2. Bull. London Math. Soc. 33:535–542. Narasimhan, M. S., Ramanan, S. (1965). Deformation of the moduli space of vector bundles over an algebraic curve. Ann. Math. 82(2):540–567. Paranjape, K., Ramanan, S. (1988). On the canonical ring of a curve. Algebraic Geometry and Commutative Algebra, Vol. II. Kinokuniya, Tokyo, pp. 503–516. Raghavendra, N., Vishwanath, P. A. (1994). Moduli of pairs and generalized theta divisors. Tôhoku Math. J. 46:321–340. Teixidor i. Bigas, M. (2008). Existence of coherent systems II. Internat. J. Math 19:1269–1283.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz26libre.pdf
Size:
320.29 KB
Format:
Adobe Portable Document Format

Collections