Extension of polynomials defined on subspaces.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Cambridge Univ Press
Google Scholar
Research Projects
Organizational Units
Journal Issue
Let k is an element of N and let E be a Banach space such that every k-homogeneous polynomial defined on a subspace of E has an extension to E. We prove that every norm one k-homogeneous polynomial, defined on a subspace, has an extension with a uniformly bounded norm. The analogous result for holomorphic functions of bounded type is obtained. We also prove that given an arbitrary subspace F subset of E. there exists a continuous morphism phi(k,F) : P((k)F) -> P((k)E) satisfying phi(k,F)(P)vertical bar(F) = P, if and only E is isomorphic to a Hilbert space.
Unesco subjects
R. M. ARON and P. D. BERNER. A Hahn–Banach extension theorem for analytic mappings. Bull.Soc. Math. France 106 (1978), no. 1, 3–24. R.M.ARON, C. BOYD andY. S. CHOI. Unique Hahn–Banach Theorems for spaces of homogeneous polynomials. J. Aust. Math. Soc. 70 (2001), no. 3, 387–400. R. M. ARON and M. SCHOTTENLOHER. Compact holomorphic mappings on Banach spaces and the approximation theory. J. Funct. Anal. 21 (1976), 7–30. G.BENNETT, L. E. DOR, V. GOODMAN, W. B. JOHNSON and C. M. NEWMAN On uncomplemented subspaces of L p, 1 < p < 2.Israel J. Math. 26 (1977), no. 2, 178–187. J.BOURGAIN. A counterexample to a complementation problem. Compositio Math. 43 (1981), no. 1,133–144. D. CARANDO. Extendible polynomials on Banach spaces. J.Math. Anal. Math. Appl. 233 (1999),359–372. P. G. CASAZZA and N. J. NIELSEN. The Maurey extension property for Banach spaces with the Gordon-Lewis property and related structures. Studia Math. 155 (2003), no. 1, 1–21. J. M. F. CASTILLO, A. DEFANT, R. GARCIA, D. PEREZ-GARCIA and J. SUAREZ. Local complementation and the extension of bilinear mappings, preprint. J. DIESTEL, H. JARCHOW and A. TONGE. Absolutely summing operators Cambridge Studies in Advanced Mathematics, 43. (Cambridge University Press, 1995). W. J. DAVIS, D. W. DEAN and I. SINGER. Complemented subspaces and systems in Banach spaces. Israel. J. Math. 6 (1968), 303–309. S. DINEEN. Holomorphically complete locally convex topological vector spaces. Lecture Notes in Math. 332. (Springer, 1973), 77–111. S. DINEEN. Complex analysis on infinite dimensional spaces. Springer Monographs in Mathematics (Springer, 1999). H. FAKHOURY. S´elections lin´eaires associees au theoreme de Hahn–Banach. J. Funct. Anal. 11 (1972), 436–452. T. FIGIEL, J. LINDENSTRAUSS and V. D. MILMAN. The dimension of almost spherical sections of convex bodies. Acta Math.139 (1977), no. 1-2, 53–94. P. GALINDO, D. GARC´IA, M. MAESTRE and J. MUJICA. Extension of multilinear mappings on Banach spaces. Studia Math. 108 (1994), no. 1, 55–76. D. J. H. GARLING and Y. GORDON. Relations between some constants associated with finite dimensional Banach spaces. Israel J. Math. 9 (1971), 346–361. H. JARCHOW, C. PALAZUELOS, D. PEREZ-GARCIA and I.VILLANUEVA. Hahn–Banach extension of multilinear forms and summability. J. Math. Anal. Appl. 336 (2007), no. 2,1161–1177. P.KIRWAN and R. RYAN. Extendibility of homogeneous polynomials on Banach spaces. Proc. Amer.Math. Soc. 126 (4) (1998), 1023–1029. J. LINDENSTRAUSS and L. TZAFRIRI. On the complemented subspaces problem. Israel.J. Math. 9 (1971), 263–269. J. LINDENSTRAUSS and L. TZAFRIRI. Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92 (Springer-Verlag, 1977). B.MAUREY. Un Theoreme de prolongement. C. R. Acad. Sci. Paris Ser. A 279 (1974), 329–332. J.MUJICA. Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in finite and infinite dimensions. North-Holland Mathematics Studies, 120. (North-Holland Publishing Co., 1986). A. PEŁCZYNSKI. On weakly compact polynomial operators on B-spaces with Dunford-Pettis property.Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 11 (1963), 371–378. A. PIETSCH. History of Banach spaces and linear operators (Birkhauser Boston, Inc., 2007). H. P. ROSENTHAL. On the subspaces of L p (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8 (1970), 273–303. I. ZALDUENDO. Extending polynomials on Banach spaces–a survey. Rev. Un. Mat. Argentina 46 (2005), no. 2, 45–72.