Extension of polynomials defined on subspaces.
Loading...
Download
Full text at PDC
Publication date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge Univ Press
Citation
Abstract
Let k is an element of N and let E be a Banach space such that every k-homogeneous polynomial defined on a subspace of E has an extension to E. We prove that every norm one k-homogeneous polynomial, defined on a subspace, has an extension with a uniformly bounded norm. The analogous result for holomorphic functions of bounded type is obtained. We also prove that given an arbitrary subspace F subset of E. there exists a continuous morphism phi(k,F) : P((k)F) -> P((k)E) satisfying phi(k,F)(P)vertical bar(F) = P, if and only E is isomorphic to a Hilbert space.