Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extension of polynomials defined on subspaces.

dc.contributor.authorFernandez Unzueta, Maite
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-20T00:21:47Z
dc.date.available2023-06-20T00:21:47Z
dc.date.issued2010
dc.description.abstractLet k is an element of N and let E be a Banach space such that every k-homogeneous polynomial defined on a subspace of E has an extension to E. We prove that every norm one k-homogeneous polynomial, defined on a subspace, has an extension with a uniformly bounded norm. The analogous result for holomorphic functions of bounded type is obtained. We also prove that given an arbitrary subspace F subset of E. there exists a continuous morphism phi(k,F) : P((k)F) -> P((k)E) satisfying phi(k,F)(P)vertical bar(F) = P, if and only E is isomorphic to a Hilbert space.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCONACyT
dc.description.sponsorshipMEC
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17522
dc.identifier.doi10.1017/S0305004110000022
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0305004110000022
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42457
dc.issue.number3
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final518
dc.page.initial505
dc.publisherCambridge Univ Press
dc.relation.projectIDP48363-F
dc.relation.projectIDMTM 2006-03531
dc.relation.projectID910626.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHomogeneous polynomial
dc.subject.keywordHolomorphic functions of bounded type
dc.subject.keywordExtension theorems
dc.subject.keywordExtension morphism
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleExtension of polynomials defined on subspaces.
dc.typejournal article
dc.volume.number148
dcterms.referencesR. M. ARON and P. D. BERNER. A Hahn–Banach extension theorem for analytic mappings. Bull.Soc. Math. France 106 (1978), no. 1, 3–24. R.M.ARON, C. BOYD andY. S. CHOI. Unique Hahn–Banach Theorems for spaces of homogeneous polynomials. J. Aust. Math. Soc. 70 (2001), no. 3, 387–400. R. M. ARON and M. SCHOTTENLOHER. Compact holomorphic mappings on Banach spaces and the approximation theory. J. Funct. Anal. 21 (1976), 7–30. G.BENNETT, L. E. DOR, V. GOODMAN, W. B. JOHNSON and C. M. NEWMAN On uncomplemented subspaces of L p, 1 < p < 2.Israel J. Math. 26 (1977), no. 2, 178–187. J.BOURGAIN. A counterexample to a complementation problem. Compositio Math. 43 (1981), no. 1,133–144. D. CARANDO. Extendible polynomials on Banach spaces. J.Math. Anal. Math. Appl. 233 (1999),359–372. P. G. CASAZZA and N. J. NIELSEN. The Maurey extension property for Banach spaces with the Gordon-Lewis property and related structures. Studia Math. 155 (2003), no. 1, 1–21. J. M. F. CASTILLO, A. DEFANT, R. GARCIA, D. PEREZ-GARCIA and J. SUAREZ. Local complementation and the extension of bilinear mappings, preprint. J. DIESTEL, H. JARCHOW and A. TONGE. Absolutely summing operators Cambridge Studies in Advanced Mathematics, 43. (Cambridge University Press, 1995). W. J. DAVIS, D. W. DEAN and I. SINGER. Complemented subspaces and systems in Banach spaces. Israel. J. Math. 6 (1968), 303–309. S. DINEEN. Holomorphically complete locally convex topological vector spaces. Lecture Notes in Math. 332. (Springer, 1973), 77–111. S. DINEEN. Complex analysis on infinite dimensional spaces. Springer Monographs in Mathematics (Springer, 1999). H. FAKHOURY. S´elections lin´eaires associees au theoreme de Hahn–Banach. J. Funct. Anal. 11 (1972), 436–452. T. FIGIEL, J. LINDENSTRAUSS and V. D. MILMAN. The dimension of almost spherical sections of convex bodies. Acta Math.139 (1977), no. 1-2, 53–94. P. GALINDO, D. GARC´IA, M. MAESTRE and J. MUJICA. Extension of multilinear mappings on Banach spaces. Studia Math. 108 (1994), no. 1, 55–76. D. J. H. GARLING and Y. GORDON. Relations between some constants associated with finite dimensional Banach spaces. Israel J. Math. 9 (1971), 346–361. H. JARCHOW, C. PALAZUELOS, D. PEREZ-GARCIA and I.VILLANUEVA. Hahn–Banach extension of multilinear forms and summability. J. Math. Anal. Appl. 336 (2007), no. 2,1161–1177. P.KIRWAN and R. RYAN. Extendibility of homogeneous polynomials on Banach spaces. Proc. Amer.Math. Soc. 126 (4) (1998), 1023–1029. J. LINDENSTRAUSS and L. TZAFRIRI. On the complemented subspaces problem. Israel.J. Math. 9 (1971), 263–269. J. LINDENSTRAUSS and L. TZAFRIRI. Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92 (Springer-Verlag, 1977). B.MAUREY. Un Theoreme de prolongement. C. R. Acad. Sci. Paris Ser. A 279 (1974), 329–332. J.MUJICA. Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in finite and infinite dimensions. North-Holland Mathematics Studies, 120. (North-Holland Publishing Co., 1986). A. PEŁCZYNSKI. On weakly compact polynomial operators on B-spaces with Dunford-Pettis property.Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 11 (1963), 371–378. A. PIETSCH. History of Banach spaces and linear operators (Birkhauser Boston, Inc., 2007). H. P. ROSENTHAL. On the subspaces of L p (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8 (1970), 273–303. I. ZALDUENDO. Extending polynomials on Banach spaces–a survey. Rev. Un. Mat. Argentina 46 (2005), no. 2, 45–72.
dspace.entity.typePublication
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscoveryf2a43f90-b551-412e-a95d-2587bbfaa27d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PrietoYerro02.pdf
Size:
530.22 KB
Format:
Adobe Portable Document Format

Collections