Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonequilibrium chiral perturbation theory and disoriented chiral condensates

dc.book.titleHadron physics: effective theories of low energy qcd
dc.contributor.authorGómez Nicola, Ángel
dc.date.accessioned2023-06-20T21:11:29Z
dc.date.available2023-06-20T21:11:29Z
dc.date.issued1999-03-11
dc.description© Amer Inst Physics. I wish to thank the organisers of the “Hadron Physics” conference and the Theory group in Coimbra for their kind help and hospitality. Financial support from CICYT, Spain, project AEN97-1693, is also acknowledged.
dc.description.abstractWe analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, se let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30638
dc.identifier.doi10.1063/1.1303025
dc.identifier.isbn1-56396-927-0
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1303025
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-ph/9910533
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60927
dc.issue.number508
dc.language.isoeng
dc.page.total10
dc.publisherAmer Inst Physics
dc.relation.ispartofseriesAIP Conference Proceedings
dc.relation.projectIDAEN97-1693
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPhase-transition
dc.subject.keywordHigh-energy
dc.subject.keywordFinite-temperature
dc.subject.keywordCollisions
dc.subject.keywordEvolution
dc.subject.keywordMass
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleNonequilibrium chiral perturbation theory and disoriented chiral condensates
dc.typebook part
dcterms.references1. A.Anselm, Phys. Lett. B217 (1989) 169; A.Anselm and M.Ryskin, Phys. Lett. B226 (1991) 482 J.D.Bjorken, Int. J. Mod. Phys. A7 (1992) 4189; J.P.Blaizot and A.Krzywicki, Phys. Rev. D46 (1992) 246. 2. L.T.Baradzei et al, Nucl. Phys. B370 (1992) 365. 3. T.Brooks et al, Phys. Rev. D55 (1997) 5667. 4. S.Weinberg, Physica A96 (1979) 327. 5. J.Gasser and H.Leutwyler, Ann. Phys. (N.Y.) 158 (1984) 142, Nucl. Phys. B250 (1985) 465. 6. J.F.Donoghue, E.Golowich and B.R.Holstein, Dynamics of the Standard Model, Cambridge University Press 1992. 7. U-G.Meißner, Rep.Prog.Phys. 56, 903-996, 1993. 8. A.Pich, Rep.Prog.Phys. 58, 563-610, 1995. 9. A.Dobado, A.Gómez Nicola, A.López-Maroto and J.R.Peláez, Effective lagrangians for the Standard Model, Springer 1997. 10. K.Rajagopal and F.Wilczek, Nucl. Phys. B404 (1993) 577. 11. D.Boyanowsky, H.J. de Vega and R.Holman, Phys. Rev. D51 (1995) 734. 12. F.Cooper, Y.Kluger, E.Mottola and J.P.Paz, Phys. Rev. D51 (1995) 2377. 13. M.A.Lampert, J.F.Dawson and F.Cooper, Phys. Rev. D54 (1996) 2213. 14. S.Gavin and B.Müller, Phys. Lett. B329 (1994) 486; S.Mrowczynski and B.Müller, Phys. Lett. B363 (1995) 1. 15. D.Kaiser, Phys. Rev. D56 (1997) 706; Phys. Rev. D59, 117901 16. H.Hiro-Oka and H.Minakata, Phys. Lett. B425 (1998) 129; B434 (1998) 461-462 (E). 17. L.Kofman, A.Linde and A.Starobinsky, Phys. Rev. D56 (1997) 3258. 18. P.Gerber and H.Leutwyler, Nucl. Phys. B321 (1989) 387. 19. A.Bochkarev and J.Kapusta, Phys. Rev. D54 (1996) 4066. 20. A.Gómez Nicola and V.Galán-González, Phys. Lett. B449 (1999) 288-298. 21. J.D.Bjorken, Phys. Rev. D27 (1983) 140. 22. J.F.Donoghue and H.Leutwyler, Z. Phys. C52 (1991) 343. 23. J.I.Kapusta and E.V.Shuryak, Phys. Rev. D49 (1994) 4694. 24. R.D.Pisarski and M.Tytgat, Phys. Rev. D54 (1996) R2989. 25. J.Gasser and H.Leutwyler, Phys. Lett. B184 (1987) 83. 26. N.W.Mac Lachlan, Theory and Application of Mathieu Functions, Dover (New York), 1961. 27. M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions, Dover (New York), 1970.
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola39preprint.pdf
Size:
222.31 KB
Format:
Adobe Portable Document Format