Nonequilibrium chiral perturbation theory and disoriented chiral condensates

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Inst Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, se let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.
© Amer Inst Physics. I wish to thank the organisers of the “Hadron Physics” conference and the Theory group in Coimbra for their kind help and hospitality. Financial support from CICYT, Spain, project AEN97-1693, is also acknowledged.
Unesco subjects
1. A.Anselm, Phys. Lett. B217 (1989) 169; A.Anselm and M.Ryskin, Phys. Lett. B226 (1991) 482 J.D.Bjorken, Int. J. Mod. Phys. A7 (1992) 4189; J.P.Blaizot and A.Krzywicki, Phys. Rev. D46 (1992) 246. 2. L.T.Baradzei et al, Nucl. Phys. B370 (1992) 365. 3. T.Brooks et al, Phys. Rev. D55 (1997) 5667. 4. S.Weinberg, Physica A96 (1979) 327. 5. J.Gasser and H.Leutwyler, Ann. Phys. (N.Y.) 158 (1984) 142, Nucl. Phys. B250 (1985) 465. 6. J.F.Donoghue, E.Golowich and B.R.Holstein, Dynamics of the Standard Model, Cambridge University Press 1992. 7. U-G.Meißner, Rep.Prog.Phys. 56, 903-996, 1993. 8. A.Pich, Rep.Prog.Phys. 58, 563-610, 1995. 9. A.Dobado, A.Gómez Nicola, A.López-Maroto and J.R.Peláez, Effective lagrangians for the Standard Model, Springer 1997. 10. K.Rajagopal and F.Wilczek, Nucl. Phys. B404 (1993) 577. 11. D.Boyanowsky, H.J. de Vega and R.Holman, Phys. Rev. D51 (1995) 734. 12. F.Cooper, Y.Kluger, E.Mottola and J.P.Paz, Phys. Rev. D51 (1995) 2377. 13. M.A.Lampert, J.F.Dawson and F.Cooper, Phys. Rev. D54 (1996) 2213. 14. S.Gavin and B.Müller, Phys. Lett. B329 (1994) 486; S.Mrowczynski and B.Müller, Phys. Lett. B363 (1995) 1. 15. D.Kaiser, Phys. Rev. D56 (1997) 706; Phys. Rev. D59, 117901 16. H.Hiro-Oka and H.Minakata, Phys. Lett. B425 (1998) 129; B434 (1998) 461-462 (E). 17. L.Kofman, A.Linde and A.Starobinsky, Phys. Rev. D56 (1997) 3258. 18. P.Gerber and H.Leutwyler, Nucl. Phys. B321 (1989) 387. 19. A.Bochkarev and J.Kapusta, Phys. Rev. D54 (1996) 4066. 20. A.Gómez Nicola and V.Galán-González, Phys. Lett. B449 (1999) 288-298. 21. J.D.Bjorken, Phys. Rev. D27 (1983) 140. 22. J.F.Donoghue and H.Leutwyler, Z. Phys. C52 (1991) 343. 23. J.I.Kapusta and E.V.Shuryak, Phys. Rev. D49 (1994) 4694. 24. R.D.Pisarski and M.Tytgat, Phys. Rev. D54 (1996) R2989. 25. J.Gasser and H.Leutwyler, Phys. Lett. B184 (1987) 83. 26. N.W.Mac Lachlan, Theory and Application of Mathieu Functions, Dover (New York), 1961. 27. M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions, Dover (New York), 1970.