Local density approach for modeling fluids with density-dependent interactions

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In a recent paper [Phys. Rev. Lett. 86, 2038 (2001)] a simple fluid with a particular density-dependent pair potential was shown to exhibit, together with the vapor-liquid transition, a liquid-liquid phase separation and it was evidenced that, in order to adequately define the correct boundaries of stability, a simulation procedure based on the use of local densities had to be devised. It was found that for certain thermodynamic states the potential drives the system toward a phase separation that is otherwise frustrated by the change in the interactions induced by density fluctuations. Therefore, when integral equations or global density simulations are used, the critical points estimated from the thermodynamics are not associated with divergent correlations and vice versa. Here, we will explore in depth this fluid and introduce a detailed account of the proposed local density simulation technique. The results presented bear general significance for density-dependent potentials, like those of liquid metals or charge-stabilized colloids.
©2003 The American Physical Society. The authors acknowledge financial support from the Dirección General de Enseñanza Superior e Investigación Científica (DGESCYT) under Grant Nos. PB 98-0673-C02-02 and BFM-2001-1017-C03 (E.L., G.R., and C.F.T.).
UCM subjects
Unesco subjects
[1] C.N. Likos, Phys. Rep. 348, 267 (2001). [2] J. Hafner, From Hamiltonians to Phase Diagrams (Springer, Berlin, 1985). [3] B.V. Derjaguin and L.D. Landau, Appl. Sci. Res., Sect. B 14, 633 (1941). [4] E.J.W. Verwey and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948). [5] B. Smit, T. Hauschild, and J.M. Prausnitz, Mol. Phys. 77, 1021 (1992). [6] F.H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys. 117, 288 (2002). [7] P.H. Poole, T. Grande, C.A. Angell, and P.F. McMillan, Science 275, 322 (1997); S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett. 78, 2409 (1997). [8] C.F. Tejero and M. Baus, Phys. Rev. E 57, 4821 (1998). [9] N.G. Almarza, E. Lomba, G. Ruiz, and C.F. Tejero, Phys. Rev. Lett. 86, 2038 (2001). [10] M. Dijkstra and R. van Roij, J. Phys.: Condens. Matter 10, 1219 (1998). [11] A.A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002). [12] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 1996). [13] F. Lado, S.M. Foiles, and N.W. Ashcroft, Phys. Rev. A 28, 2374 (1983). [14] A.G. Schlijper, M.M. Telo da Gama, and P.G. Ferreira, J. Chem. Phys. 98, 1534 (1993). [15] C.F. Tejero and M. Baus, J. Chem. Phys. 118, 892 (2003). [16] C.F. Tejero, J. Phys. Condens. Matter 15, 5395 (2003). [17] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic, Oxford, 1986). [18] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987). [19] P.J. Camp and G.N. Patey, J. Chem. Phys. 114, 399 (2001). [20] K. Kiyohara, K.E. Gubbins, and A.Z. Panagiotopoulos, J. Chem. Phys. 106, 3338 (1997). [21] M.G. Martin, B. Chen, and J.I. Siepmann, J. Chem. Phys. 108, 3383 [1998]. [22] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 1996).