Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Local density approach for modeling fluids with density-dependent interactions

dc.contributor.authorGarcía Almarza, Noé
dc.contributor.authorLomba, Enrique
dc.contributor.authorRuiz, G.
dc.contributor.authorFernández Tejero, Carlos
dc.date.accessioned2023-06-20T10:39:04Z
dc.date.available2023-06-20T10:39:04Z
dc.date.issued2003-02
dc.description©2003 The American Physical Society. The authors acknowledge financial support from the Dirección General de Enseñanza Superior e Investigación Científica (DGESCYT) under Grant Nos. PB 98-0673-C02-02 and BFM-2001-1017-C03 (E.L., G.R., and C.F.T.).
dc.description.abstractIn a recent paper [Phys. Rev. Lett. 86, 2038 (2001)] a simple fluid with a particular density-dependent pair potential was shown to exhibit, together with the vapor-liquid transition, a liquid-liquid phase separation and it was evidenced that, in order to adequately define the correct boundaries of stability, a simulation procedure based on the use of local densities had to be devised. It was found that for certain thermodynamic states the potential drives the system toward a phase separation that is otherwise frustrated by the change in the interactions induced by density fluctuations. Therefore, when integral equations or global density simulations are used, the critical points estimated from the thermodynamics are not associated with divergent correlations and vice versa. Here, we will explore in depth this fluid and introduce a detailed account of the proposed local density simulation technique. The results presented bear general significance for density-dependent potentials, like those of liquid metals or charge-stabilized colloids.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Enseñanza Superior e Investigación Científica (DGESCYT)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23751
dc.identifier.doi10.1103/PhysRevE.67.021202
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.67.021202
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50898
dc.issue.number2
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDPB 98-0673-C02-02
dc.relation.projectIDBFM-2001-1017-C03
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordCoexistence
dc.subject.keywordPotentials
dc.subject.keywordCriticality
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleLocal density approach for modeling fluids with density-dependent interactions
dc.typejournal article
dc.volume.number67
dcterms.references[1] C.N. Likos, Phys. Rep. 348, 267 (2001). [2] J. Hafner, From Hamiltonians to Phase Diagrams (Springer, Berlin, 1985). [3] B.V. Derjaguin and L.D. Landau, Appl. Sci. Res., Sect. B 14, 633 (1941). [4] E.J.W. Verwey and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948). [5] B. Smit, T. Hauschild, and J.M. Prausnitz, Mol. Phys. 77, 1021 (1992). [6] F.H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys. 117, 288 (2002). [7] P.H. Poole, T. Grande, C.A. Angell, and P.F. McMillan, Science 275, 322 (1997); S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett. 78, 2409 (1997). [8] C.F. Tejero and M. Baus, Phys. Rev. E 57, 4821 (1998). [9] N.G. Almarza, E. Lomba, G. Ruiz, and C.F. Tejero, Phys. Rev. Lett. 86, 2038 (2001). [10] M. Dijkstra and R. van Roij, J. Phys.: Condens. Matter 10, 1219 (1998). [11] A.A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002). [12] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 1996). [13] F. Lado, S.M. Foiles, and N.W. Ashcroft, Phys. Rev. A 28, 2374 (1983). [14] A.G. Schlijper, M.M. Telo da Gama, and P.G. Ferreira, J. Chem. Phys. 98, 1534 (1993). [15] C.F. Tejero and M. Baus, J. Chem. Phys. 118, 892 (2003). [16] C.F. Tejero, J. Phys. Condens. Matter 15, 5395 (2003). [17] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic, Oxford, 1986). [18] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987). [19] P.J. Camp and G.N. Patey, J. Chem. Phys. 114, 399 (2001). [20] K. Kiyohara, K.E. Gubbins, and A.Z. Panagiotopoulos, J. Chem. Phys. 106, 3338 (1997). [21] M.G. Martin, B. Chen, and J.I. Siepmann, J. Chem. Phys. 108, 3383 [1998]. [22] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 1996).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero05.pdf
Size:
123.64 KB
Format:
Adobe Portable Document Format

Collections