Multiferroism Induced by Spontaneous Structural Ordering in Antiferromagnetic Iron Perovskites

Citation
Abstract
Room-temperature multiferroism in polycrystalline antiferromagnetic Fe perovskites is reported for the first time. In the perovskite-type oxides RE1.2Ba1.2Ca0.6Fe3O8 (RE = Gd, Tb), the interplay of layered ordering of Gd(Tb), Ba, and Ca atoms with the ordering of FeO4-tetrahedra (T) and FeO6-octahedra (O) results in a polar crystal structure. The layered structure consists of the stacking sequence of RE/Ca-RE/Ca-Ba-RE/Ca layers in combination with the TOOT sequence in a unit cell. A polar moment of 33.0 μC/cm2 for the Gd-oxide (23.2 μC/cm2 for the Tb one) is determined from the displacements of the cations, mainly Fe, and oxygen atoms along the b-axis. These oxides present antiferromagnetic ordering doubling the c-axis, and the magnetic structure in the Tb compound remains up to 690 K, which is one of the highest transition temperatures reported in Fe perovskites.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections