Gas permeation characteristics of heterogeneous ODPA-BIS P polyimide membranes at different temperatures

Thumbnail Image
Full text at PDC
Publication Date
García Villaluenga, Juan Pedro
Seoane Rodríguez, Benjamín
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Google Scholar
Research Projects
Organizational Units
Journal Issue
Heterogeneous carbon molecular sieves and hypercrosslinked polystyrene microparticles adsorbent-based membranes with a (ODPA-BIS P) polyimide binder were prepared. The effect of adsorbent particles on the gas transport properties of heterogeneous membranes was studied. Permeability, diffusion and solubility coefficients of He, CO2, O-2 and N-2 were estimated for homogeneous and heterogeneous membranes at a feed pressure of 1 atm for different temperatures between 25 and 60 degrees C. It was observed that adsorbent-filled (ODPA-BIS P) polyimide membranes exhibit higher gas permeability in comparison with adsorbent-free membrane, while permselectivity is maintained. The results also showed that the adsorbents enhance significantly gas diffusivity in (ODPA-BIS P) polyimide membrane, whereas the gas solubility is clearly reduced. In both type of heterogeneous membranes, gas permeation and diffusion are thermal activated processes described by the Arrhenius equation, whereas the Sorption process is exothermic. The addition of both type of adsorbents to the (ODPA-BIS P) polyimide membrane increases the activation energy of permeability, this is mainly due to a significant increase of the heat of sorption, because the activation energy for diffusion is slightly decreased.
© 2007 Elsevier B.V. Financial support from University Complutense of Madrid under project PR1/06-14460-B is gratefully acknowledged.
UCM subjects
Unesco subjects
2213 Termodinámica
[1] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results, J. Membr. Sci. 211 (2003) 311–334. [2] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves. II. Modeling permeance behavior, J. Membr. Sci. 211 (2003) 335–348. [3] D.Q. Vu, W.J. Koros, S.J. Miller, Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves, J. Membr. Sci. 211 (2003) 233–239. [4] Y.K. Kim, H.B. Park, Y.M. Lee, Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone, J. Membr. Sci. 251 (2005) 159–167. [5] Z.K. Xu, L. Xiao, Y.Y. Xu, Gas separation properties of PMDA–ODA polyimide nanocomposite membranes containing polymeric nanoparticles, Polym. Mater. Sci. Eng. 85 (2001) 92–93. [6] V. Krystl, J. Hradil, B. Bernauer, M. Kočiřík, Heterogeneous membranes based on zeolites for separation of small molecules, React. Funct. Polym. 48 (2001) 129–139. [7] J. Hradil, V. Krystl, P. Hrabánek, B. Bernauer, M. Kočiřík, Heterogeneous membranes based on polymeric adsorbents for separation of small molecules, React. Funct. Polym. 61 (2004) 303–313. [8] J. Hradil, V. Krystl, P. Hraáanek, B. Bernauer, M. Kočiřík, Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent, React. Funct. Polym. 65 (2005) 57–68. [9] J. Hradil, P. Sysel, L. Broˇzov´a, J. Kov´aˇrov´a, J. Kotek, Heterogeneous membranes based on a composite of a hypercrosslinked microparticle adsorbent and polyimide binder, React. Funct. Polym. 67 (2007) 432–441. [10] J. Hradil, P. Sysel, L. Brožová, J. Kotek, Polyimide membranes based on carbon molecular sieves prepared by microwave irradiation, Carbon, in press. [11] J.P.G. Villaluenga, B. Seoane, V. Compañ, R. Díaz Calleja, Thermomechanical and diffusive studies in films prepared from copolymers of ethylene-1-octene subject to longitudinal and transversal induced stretching, Polymer 38 (1997) 3827–3836. [12] Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara, T. Tamari, Relation of gas permeability with structure of aromatic polyimides I, J. Membr. Sci. 111 (1996) 169–182. [13] R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, 1992. [14] D.W. Breck, Zeolite Molecular Sieves, Kriger, Malabar, 1974. [15] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62 (1991) 165–185. [16] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide, Carbon 42 (2004) 3123–3131. [17] E. Sáiz, M.M.L. González, E. Riande, J. Guzmán, V. Compañ, Simulations of diffusive and sorption processes of gases in polyimide membranes: Comparison with experiments, Phys. Chem. Chem. Phys. 5 (2003) 2862–2868. [18] Y.X. Xu, T.G. Shang, C.X. Chen, J.D. Li, Dynamic sorption and anomalous diffusion of small molecules in dense polyimide membranes, J. Chem. Eng. Data 51 (2006) 2016–2021. [19] R. Krishna, L.J.P. Van den Broeke, The Maxwell–Stefan description of mass transport across zeolite membranes, Chem. Eng. J. (Lausanne) 57 (2) (1995) 155–162. [20] R. Krishna, J.A.Wesselingh, The Maxwell–Stefan approach to mass transfer, Chem. Eng. Sci. 52 (1997) 861–911. [21] J.M. van de Graaf, F. Kapteijn, J.A. Moulijn, Modeling permeation of binary mixtures through zeolite membranes, AIChE J. 45 (3) (1999) 497–511. [22] S. Pauly, Permeability and diffusion data, in: J. Brandrup, E.H. Immergut, E.A. Grulke (Eds.), Polymer Handbook, vol. VI, JohnWiley, New York, 1999, pp. 543–545. [23] Z.K. Xu, L. Xiao, J.L. Wang, J. Springer, Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles, J. Membr. Sci. 202 (2002) 27–34. [24] H. Tsuzumi, K. Toi, T. Ito, T. Kasai, Relationship between thermal properties and diffusion coefficients of gases for polyimide films, J. Appl. Polym. Sci. 64 (1997) 389–397.