Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Overcoming the limitations of motion sensor models by considering dendritic computations

Loading...
Thumbnail Image

Full text at PDC

Publication date

2025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio
Citations
Google Scholar

Citation

Luna, R., Serrano Pedraza, I. & Bertalmío, M. Overcoming the limitations of motion sensor models by considering dendritic computations. Scientific Reports 15, 9213 (2025). https://doi.org/10.1038/s41598-025-90095-z

Abstract

The estimation of motion is an essential process for any sighted animal. Computational models of motion sensors have a long and successful history but they still suffer from basic shortcomings, as they disagree with physiological evidence and each model is dedicated to a specific type of motion, which is controversial from a biological standpoint. In this work, we propose a new approach to modeling motion sensors that considers dendritic computations, a key aspect for predicting single-neuron responses that had previously been absent from motion models. We show how, by taking into account the dynamic and input-dependent nature of dendritic nonlinearities, our motion sensor model is able to overcome the fundamental limitations of standard approaches.

Research Projects

Organizational Units

Journal Issue

Description

Raúl Luna was supported by a Juan de la Cierva-Formación fellowship (FJC2020-044084-I) funded by Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (Spain) and by the European Union NextGenerationEU/PRTR. Ignacio Serrano Pedraza was supported by grant PID2021-122245NB-I00, from Ministerio de Ciencia e Innovación (Spain). Marcelo Bertalmío was supported by project VIS4NN, Programa Fundamentos 2022, Fundación BBVA, and by grant PID2021-127373NB-I00, Ministerio de Ciencia e Innovación (Spain).

UCM subjects

Keywords

Collections