Twisted extreme trans-Neptunian orbital parameter space: statistically significant asymmetries confirmed

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Asymmetric debris discs have been found around stars other than the Sun; asymmetries are sometimes attributed to perturbations induced by unseen planets. The presence or absence of asymmetries in our own trans-Neptunian belt remains controversial. The study of sensitive tracers in a sample of objects relatively free from the perturbations exerted by the four known giant planets and most stellar flybys may put an end to this debate. The analysis of the distribution of the mutual nodal distances of the known extreme trans-Neptunian objects (ETNOs) that measure how close two orbits may get to each other could be such a game changer. Here, we use a sample of 51 ETNOs together with random shufflings of this sample and two unbiased scattered-disc orbital models to confirm a statistically significant (62σ) asymmetry between the shortest mutual ascending and descending nodal distances as well as the existence of multiple highly improbably (p < 0.0002) correlated pairs of orbits with mutual nodal distances as low as 0.2 au at 152 au from the Solar system’s barycentre or 1.3 au at 339 au. We conclude that these findings fit best with the notion that trans-Plutonian planets exist.
Bernardinelli P. H. et al., 2022, ApJS, 258, 41 Brown M. E., 2001, AJ, 121, 2804 Brown M. E., 2017, AJ, 154, 65 Brown M. E., Barkume K. M., Ragozzine D., Schaller E. L., 2007, Nature, 446, 294 Chiang E. I., 2002, ApJ, 573, L65 Chiang E. I., Lovering J. R., Millis R. L., Buie M. W., Wasserman L. H., Meech K. J., 2003, Earth, Moon, and Planets, 92, 49 Faramaz V. et al., 2021, AJ, 161, 271 Fisher R. A., Yates F., 1938, Statistical Tables for Biological, Agricultural, and Medical Research. Oliver and Boyd, London, pp 26–27 de la Fuente Marcos C., de la Fuente Marcos R., 2018, MNRAS, 474, 838 de la Fuente Marcos C., de la Fuente Marcos R., 2021, MNRAS, 506, 633 de la Fuente Marcos C., de la Fuente Marcos R., Aarseth S. J., 2017,Ap&SS, 362, 198 de la Fuente Marcos C., de la Fuente Marcos R., Licandro J., Serra-Ricart M., Martino S., de León J., Chaudry F., Alarcón M. R., 2021, A&A,649, A85 de León J., de la Fuente Marcos C., de la Fuente Marcos R., 2017, MNRAS,467, L66 Ginsburg A. et al., 2019, AJ, 157, 98 Gladman B., Volk K., 2021, ARA&A, 59, 203 Harris C. R. et al., 2020, Nature, 585, 357 Hughes A. M., Duchêne G., Matthews B. C., 2018, ARA&A, 56, 541 Hunter J. D., 2007, CSE, 9, 90 Knuth D. E., 1969, The Art of Computer Programming, Vol. 2: Seminumerical algorithms. Addison-Wesley, Reading, MA, pp. 139–140 Li J., Jeff Xia Z., 2020, A&A, 637, A87 Lovell J. B. et al., 2021, MNRAS, 506, 1978 Marcus R. A., Ragozzine D., Murray-Clay R. A., Holman M. J., 2011, ApJ, 733, 40 Marino S. et al., 2020, MNRAS, 498, 1319 Napier K. J. et al., 2021, PSJ, 2, 59 Oldroyd W. J., Trujillo C. A., 2021, AJ, 162, 39 Park R. S., Folkner W. M., Williams J. G., Boggs D. H., 2021, AJ, 161, 105 Saillenfest M., Fouchard M., Tommei G., Valsecchi G. B., 2017, Celest. Mech. Dyn. Astron., 129, 329 Sende J. A., Löhne T., 2019, A&A, 631, A141 Van der Walt S., Colbert S. C., Varoquaux G., 2011, CSE, 13, 22 Van Laerhoven C. et al., 2019, AJ, 158, 49 Volk K., Malhotra R., 2017, AJ, 154, 62 Wall J. V., Jenkins C. R., 2012, Practical Statistics for Astronomers. Cambridge Univ. Press, Cambridge Wyatt M., 2020, in Prialnik D., Barucci M. A., Young L., eds, The TransNeptunian Solar System. Elsevier, Amsterdam, Netherlands, pp 351–376 Zderic A., Tiongco M., Collier A., Wernke H., Generozov A., Madigan A.-M., 2021, AJ, 162, 278