Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of Fe and Al doping in the stabilization of the anatase phase in TiO_2 nanoparticles

dc.contributor.authorVásquez, G. Cristian
dc.contributor.authorPeche-Herrero, Andrea
dc.contributor.authorMaestre Varea, David
dc.contributor.authorAlemán Llorente, Belén
dc.contributor.authorRamirez-Castellanos, Julio
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorGonzalez-Calbet, José M.
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-19T14:56:29Z
dc.date.available2023-06-19T14:56:29Z
dc.date.issued2014
dc.description© The Royal Society of Chemistry 2012. This work was supported by MINECO (Projects MAT2011-23068, MAT 2012-31959 and Consolider Ingenio CSD 2009-00013). Authors are grateful to National Centre for Electron Microscopy (CNME) at Universidad Complutense de Madrid.
dc.description.abstractAnatase TiO_2 nanoparticles doped with Al or Fe have been synthesized via a modified Pechini method which allows to reach high control in size and composition. Microstructural analysis onfirms the good crystallinity of the doped anatase nanoparticles with average sizes around 5 nm and dopant cationic concentrations up to 30 %. Anatase to rutile transition (ART) has been thermally driven and analyzed as a function of the doping. Thermo-diffraction measurements indicate that the phase transition can be either promoted or inhibited by Fe or Al doping, respectively. The influence of Al and Fe doping in the phase transition has been discussed by means of Raman spectroscopy, Photoluminescence and X-ray Photoelectron spectroscopy, with special attention paid to the role played by Ti^(3+) at the surface. Anatase phase has been stabilized up to temperatures above 900 ºC by appropriate Al doping
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33343
dc.identifier.doi10.1039/c4tc02099e
dc.identifier.issn2050-7526
dc.identifier.officialurlhttp://dx.doi.org/10.1039/c4tc02099e
dc.identifier.relatedurlhttp://pubs.rsc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34883
dc.issue.number48
dc.journal.titleJournal of materials chemistry C
dc.language.isoeng
dc.page.final10385
dc.page.initial10377
dc.publisherRoyal Soc. Chemistry
dc.relation.projectIDMAT2011-23068
dc.relation.projectIDMAT 2012-31959
dc.relation.projectIDConsolider Ingenio CSD 2009-00013
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordRutile
dc.subject.keywordPhotoluminescence
dc.subject.keywordTransformation
dc.subject.keywordSpectroscopy
dc.subject.keywordTransition
dc.subject.keywordElectrodes
dc.subject.keywordDependence
dc.subject.keywordParticles
dc.subject.keywordOxidation
dc.subject.keywordDioxide
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleInfluence of Fe and Al doping in the stabilization of the anatase phase in TiO_2 nanoparticles
dc.typejournal article
dc.volume.number2
dcterms.references1 S.C. Roy, O.K.Varghese, M. Paulose and C.A. Grimes, ACS Nano, 2010, 4, 1259-1278. 2. M. Gratzel. Nature, 2001, 414, 338-344 3. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 2011, 46, 855-874 4. R.Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269-271. 5. G. C. Vásquez, M. A. Peche-Herrero, D. Maestre, A. Cremades, J. Ramírez-Castellanos, J.M. González-Calbet and J. Piqueras. J. Phys. Chem. C, 2013, 117, 1941. 6. E. Setiawati and K. Kawano, J. Alloys Compd., 2008, 451, 293. 7. H. Cheng and A. Selloni. Phys. Rev. B, 2009, 79, 092101. 8 D.P.Singh, A. George, R. V. Kumar, J.E. ten Elshof and H. Wagemaker, Phys. Chem. C, 2013, 117, 19809-19825 9. B.Sun, P.G. Smirniotis, Catal. Today, 2003, 88, 49. 10. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A 2003, 244, 383–391 11. S. Riyas, G. Krishnan and P.N. Mohandas. Adv. Appl. Ceram., 2007, 106, 225. 12. M.P. Pechini, 1967 U.S. Patent No. 3330697. 13. 2014, OEPM Patent P201400722. 14. M. Vila, C. Díaz-Guerra and J. Piqueras. Appl. Phys. Lett., 2012, 101, 071905. 15. T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectr., 1978, 7, 321-324. 16. L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura. J. Cryst. Growth., 2004, 264, 246-252. 17. F. Tian, Y. Zhang, J. Zhang and C. Pan, J. Phys. Chem. C, 2012, 116, 7515-7519. 18. S.V. Chong, N. Suresh, J. Xia, N. Al-Salim and H. Idriss. J. Phys. Chem. C, 2007, 111, 10389-10393. 19. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner and S.E. Pratsinis. J. Appl. Phys., 2005, 98, 074305. 20. Anna Iwaszuk and Michael Nolan, J. Phys.: Condens. Matter, 2011, 23, 334207. 21. Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose and S. A. Akbar, Sensors and Actuators B, 2007, 124, 111–117. 22. J.C. Parker and R.W. Siegel, J. Mater. Research, 1990, 5, 1246-1252. 23. U. Gesenhues and T. Rentschler, Journal of Solid State Chemistry, 1999, 143, 210-218. 24. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu and J. Chu. Phys. Chem. Chem. Phys., 2011, 13, 13096-13105. 25. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang, Appl. Phys Lett., 2001, 78, 1125. 26. R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G.Margaritondo and F. Levy, J. Appl. Phys., 1994, 75, 2945. 27. S. Ghosh, G.G.Khan, K. Mandal, A. Samanta and P.M.G. Nambissan. J. Phys. Chem. C., 2013, 117, 8458. 28. D.P. Colombo, K.A. Roussel, J. Saeh,D.E. Skinner, J.J. Cavaleri and R.M. Bowman, Chem. Phys. Lett., 1995, 232, 207 29. C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura and L.V.Saraf. J. Phys. Chem. C, 2012, 116, 10796. 30. Y. Zhang, L. Wu, E. Xie, H. Duan, W. Han and J. Zhao. J. Power Sources, 2009, 189, 1256. 31. S. Sahoo, A.K. Arora and V. Sridharan. J. Phys. Chem. C, 2009, 113, 16927. 32. R. Shirley, M. Kraft and O. R. Inderwildi. Phys. Rev. B, 2010, 81, 075111. 33. Qi Wu, Junjie Ouyang, Kunpeng Xie, Lan Sun, Mengye Wang, Changjian Lin, Journal of Hazardous Materials, 2012, 199– 200, 410. 34. M. Kayama, H. Nishido, S. Toyoda, K. Komuro, A.A. Finch, M.R. Lee and K. Ninagawa. Am. Mineralogist, 2014, 99, 65. 35. S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel and L. Mädler, J. Am. Chem. Soc., 2013, 133, 11270. 36. Q. Yu, L. Jin,C. Zhou, Solar Energy Materials & Solar Cells, 2011, 95, 2322. 37. H. Zhang, J.F. Banfield, J. Phys. Chem B., 2000, 104, 34813487. 38. H. Zhang, J.F. Banfield, Chem. Mater., 2005, 17, 3421. 39. V. Etacheri, S. Pillai, M.K. Seery and S. J. Hinder, Adv. Funct. Mat. 2011, 21, 3744-3752.
dspace.entity.typePublication
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery43cbf291-2f80-4902-8837-ea2a9ffaa702

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna66 postprint + embargo01_11_2015.pdf
Size:
944.09 KB
Format:
Adobe Portable Document Format

Collections