On the finite dimension of attractors of parabolic problems in IRN with general potentials
dc.contributor.author | Arrieta Algarra, José María | |
dc.contributor.author | Moya , Nancy | |
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.date.accessioned | 2023-06-20T09:29:46Z | |
dc.date.available | 2023-06-20T09:29:46Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We prove that compact attractors of nonlinear parabolic problems with general potentials have finite fractal and Haussdorf dimension. The linear potentials belong to the space of locally uniform functions in and, unlike other references, they are allowed to change sign. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/13275 | |
dc.identifier.doi | 10.1016/j.na.2006.12.007 | |
dc.identifier.issn | 0362-546X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/0362546X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49724 | |
dc.issue.number | 5 | |
dc.journal.title | Nonlinear Analysis: Theory, Methods & Applications | |
dc.language.iso | eng | |
dc.page.final | 1099 | |
dc.page.initial | 1082 | |
dc.publisher | Elsevier | |
dc.relation.projectID | BFM2003-03810 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Attractors | |
dc.subject.keyword | Finite dimension | |
dc.subject.keyword | Unbounded domain | |
dc.subject.keyword | Uniform differentiability | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | On the finite dimension of attractors of parabolic problems in IRN with general potentials | |
dc.type | journal article | |
dc.volume.number | 68 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a |
Download
Original bundle
1 - 1 of 1