Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Expanding the asymptotic explosive boundary behavior of large solutions to a semilinear elliptic equation

dc.contributor.authorDíaz Díaz, Gregorio
dc.contributor.authorAlarcón, S.
dc.contributor.authorLetelier, René
dc.contributor.authorRey Cabezas, José María
dc.date.accessioned2023-06-20T00:05:03Z
dc.date.available2023-06-20T00:05:03Z
dc.date.issued2010-03
dc.description.abstractThe main goal of this paper is to study the asymptotic expansion near the boundary of the large solutions of the equation -Delta u + lambda u(m) = f in Omega, where lambda > 0, m > 1, f is an element of c(Omega), f >= 0, and Omega is an open bounded set of R-N, N > 1, with boundary smooth enough. Roughly speaking, we show that the number of explosive terms in the asymptotic boundary expansion of the solution is finite, but it goes to infinity as in goes to 1. We prove that the expansion consists in two eventual geometrical and non-geometrical parts separated by a term independent on the geometry of partial derivative Omega, but dependent on the diffusion. For low explosive sources the non-geometrical part does not exist; all coefficients depend on the diffusion and the geometry of the domain by means of well-known properties of the distance function dist(x, partial derivative Omega). For high explosive sources the preliminary coefficients, relative to the non-geometrical part, are independent on Omega and the diffusion. Finally, the geometrical part does not exist for very high explosive sources consists in two eventual geometrical and non-geometrical parts, separated by a term independent on the geometry of $\partial\Omega$∂Ω, but dependent on the diffusion. For low explosive sources the non-geometrical part does not exist; all coefficients depend on the diffusion and the geometry of the domain by means of well-known properties of the distance function ${\rm dist}(x,\partial\Omega)$dist(x,∂Ω). For high explosive sources the preliminary coefficients, relative to the non-geometrical part, are independent on $\Omega$Ω and the diffusion. Finally, the geometrical part does not exist for very high explosive sources.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDgisgpi
dc.description.sponsorshipResearch Group MOMAT
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12443
dc.identifier.doi10.1016/j.na.2009.10.040
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/0362546X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/41916
dc.issue.number5
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.page.final2443
dc.page.initial2426
dc.publisherElsevier
dc.relation.projectIDUTFSM/2008 12 08 22
dc.relation.projectIDMTM 2008-06208
dc.relation.projectIDMTM2008-04621
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.keywordLarge solutions
dc.subject.keywordAsymptotic behavior
dc.subject.keywordUpper and lower solutions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExpanding the asymptotic explosive boundary behavior of large solutions to a semilinear elliptic equation
dc.typejournal article
dc.volume.number72 P
dspace.entity.typePublication
relation.isAuthorOfPublication4ec05576-7c32-4862-aaea-26a72bafee94
relation.isAuthorOfPublication1cb447c8-e8e7-4d74-b66a-b26404ed1d18
relation.isAuthorOfPublication.latestForDiscovery4ec05576-7c32-4862-aaea-26a72bafee94

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2010expanding-04.pdf
Size:
339.72 KB
Format:
Adobe Portable Document Format

Collections