Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algebrability and nowhere Gevrey differentiability

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Hebrew University Magnes Press
Citations
Google Scholar

Citation

Aron, R. M., García-Pacheco, F. J., Pérez-García, D., Seoane-Sepúlveda, J. B. (2009) On dense-lineability of sets of functions on ℝ. Topology 48: pp. 149-156 Aron, R. M., Gurariy, V. I., Seoane-Sepúlveda, J. B. (2005) Lineability and spaceability of sets of functions on ℝ. Proceedings of the American Mathematical Society 133: pp. 795-803 Aron, R. M., Pérez-García, D., Seoane-Sepúlveda, J. B. (2006) Algebrability of the set of non-convergent Fourier series. Studia Mathematica 175: pp. 83-90 Aron, R. M., Seoane-Sepúlveda, J. B. (2007) Algebrability of the set of everywhere surjective functions on ℂ. Bulletin of the Belgian Mathematical Society. Simon Stevin 14: pp. 25-31 Balcerzak, M., Bartoszewicz, A., Filipczak, M. (2013) Nonseparable spaceability and strong algebrability of sets of continuous singular functions. Journal of Mathematical Analysis and Applications 407: pp. 263-269 A. Bartoszewicz, M. Bienias, M. Filipczak and S. G_lşab, Exponential-like function method in strong c-algebrability, arXiv:1307.0331. Bartoszewicz, A., Głşab, S. (2013) Strong algebrability of sets of sequences and functions. Proceedings of the American Mathematical Society 141: pp. 827-835 Bartoszewicz, A., Głşab, S. (2013) Additivity and lineability in vector spaces. Linear Algebra and its Applications 439: pp. 2123-2130 Bastin, F., Esser, C., Nicolay, S. (2012) Prevalence of “nowhere analyticity”. Studia Mathematica 210: pp. 239-246 Bayart, F., Quarta, L. (2007) Algebras in sets of queer functions. Israel Journal of Mathematics 158: pp. 285-296 Bernal-González, L. (2008) Lineability of sets of nowhere analytic functions. Journal of Mathematical Analysis and Applications 340: pp. 1284-1295 Bernal-González, L. (2010) Algebraic genericity of strict-order integrability. Studia Mathematica 199: pp. 279-293 Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J. B. (2014) Linear subsets of nonlinear sets in topological vector spaces. Bulletin of the American Mathematical Society (N.S.) 51: pp. 71-130 Botelho, G., Cariello, D., Fávaro, V. V., Pellegrino, D. (2012) Maximal spaceability in sequence spaces. Linear Algebra and its Applications 437: pp. 2978-2985 Botelho, G., Cariello, D., Fávaro, V. V., Pellegrino, D., Seoane-Sepúlveda, J. B. (2013) Distinguished subspaces of L p of maximal dimension. Studia Mathematica 215: pp. 261-280 G. Botelho, D. Cariello, V. V. Fávaro, D. Pellegrino and J. B. Seoane-Sepúlveda, On very non-linear subsets of continuous functions, Quarterly Journal of Mathematics (2013), in press. doi:10.1093/qmath/hat043. Chung, S.-Y., Chung, J. (2005) There exist no gaps between Gevrey differentiable and nowhere Gevrey differentiable. Proceedings of the American Mathematical Society 133: pp. 859-863 Conejero, J. A., Jiménez-Rodríguez, P., Muñoz-Fernández, G. A., Seoane-Sepúlveda, J. B. (2014) When the Identity Theorem “seems” to fail. American Mathematical Monthly 121: pp. 60-68 Enflo, P. H., Gurariy, V. I., Seoane-Sepúlveda, J. B. (2014) Some results and open questions on spaceability in function spaces. Transactions of the American Mathematical Society 366: pp. 611-625 Fonf, V. P., Gurariy, V. I., Kadets, M. I. (1999) An infinite-dimensional subspace of C[0, 1]consisting of nowhere differentiable functions. Comptes Rendus de l’Académie Bulgare des Sciences 52: pp. 13-16 García, D., Grecu, B. C., Maestre, M., Seoane-Sepúlveda, J. B. (2010) Infinite dimensional Banach spaces of functions with nonlinear properties. Mathematische Nachrichten 283: pp. 712-720 García-Pacheco, F. J., Martín, M., Seoane-Sepúlveda, J. B. (2009) Lineability, spaceability, and algebrability of certain subsets of function spaces. Taiwanese Journal of Mathematics 13: pp. 1257-1269 Gurariy, V. I. (1966) Subspaces and bases in spaces of continuous functions. Dokladi Akademii Nauk SSSR 167: pp. 971-973 Gurariy, V. I., Quarta, L. (2004) On lineability of sets of continuous functions. Journal of Mathematical Analysis and Applications 294: pp. 62-72 Hencl, S. (2000) Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. Proceedings of the American Mathematical Society 128: pp. 3505-3511 Hunt, B. R., Sauer, T., Yorke, J. A. (1992) Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bulletin of the American Mathematical Society 27: pp. 217-238 Levine, B., Milman, D. (1940) On linear sets in space C consisting of functions of bounded variation. Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16: pp. 102-105 Morgenstern, D. (1954) Unendlich oft differenzierbare nicht-analytische Funktionen. Mathematische Nachrichten 12: pp. 74 Rodríguez-Piazza, L. (1995) Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proceedings of the American Mathematical Society 123: pp. 3649-3654 Wheeden, R. L., Zygmund, A. (1977) Measure and Integral. Marcel Dekker, New York Yamanaka, T. (1989) A new higher order chain rule and Gevrey class. Annals of Global Analysis and Geometry 7: pp. 179-203

Abstract

We show that there exist c-generated algebras (and dense in C ∞([0, 1])) every nonzero element of which is a nowhere Gevrey differentiable function. This leads to results of dense algebrability (and, therefore, lineability) of functions enjoying this property. In the process of proving these results we also provide a new construction of nowhere Gevrey differentiable functions.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections