Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Isotropic-nematic transition of hard ellipses

dc.contributor.authorCuesta, J. A.
dc.contributor.authorFernández Tejero, Carlos
dc.contributor.authorBaus, Marc
dc.date.accessioned2023-06-20T18:54:21Z
dc.date.available2023-06-20T18:54:21Z
dc.date.issued1989-06-15
dc.description© 1989 The American Physical Society. One of us (M.B.) acknowledges the support of the Association EURATOM—Etat Belge and also of the Fonds National de la Recherche Scientifique. This work has, moreover, been partially sponsored by the Comisión Asesora de Investigación Científica y Técnica (Spain) Project No. PB85-0024.
dc.description.abstractThe orientational freezing of a system of hard ellipses, as a first approximation for a nematogen adsorbed on a smooth substrate, is studied with the aid of an approximate density-functional theory used previously for the study of hard ellipsoids. The isotropic-nematic transition, which was first order for the ellipsoids, is shown to proceed via a continuous transition in the case of the ellipses. We also show that when reducing the dimensionality of the angular space of ellipsoids, the width of the transition shrinks continuously and reaches zero only for a strictly two dimensional angular space.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAssociation EURATOM-Etat Belge
dc.description.sponsorshipFonds National de la Recherche Scientifique
dc.description.sponsorshipComisión Asesora de Investigación Científica y Técnica (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23991
dc.identifier.doi10.1103/PhysRevA.39.6498
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.39.6498
dc.identifier.relatedurlhttp://pra.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58898
dc.issue.number12
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final6506
dc.page.initial6498
dc.publisherAmerican Physical Society
dc.relation.projectIDPB85-0024
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordOptics
dc.subject.keywordPhysics
dc.subject.keywordAtomic
dc.subject.keywordMolecular & chemical
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleIsotropic-nematic transition of hard ellipses
dc.typejournal article
dc.volume.number39
dcterms.references[1] P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974); G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals: Fundamentals (Springer-Verlag, Berlin, 1988). [2] For a recent review see, e.g., D. Frenkel, J. Phys. Chem. 92, 3280 (1988). [3] See, for example, B. H. Mulder and D. Frenkel, Mol. Phys. 55, 1193 (1985); U. P. Singh and Y. Singh, Phys. Rev. A 33, 2725 (1986); M. Baus, J. L. Colot, X. G. Wu, and H. Xu, Phys. Rev. Lett. 59, 2184 (1987). [4] W. Maier and A. Saupe, Z. Naturforsch. , Teil A 13, 564 (1958); W. L. McMillan, Phys. Rev. A 4, 1238 (1971). [5] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976); D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976). [6] See, for example, K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988). [7] Another example of reduced dimensionality is given by the freely suspended liquid-crystal films studied by C. Y. Young., R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978). [8] For a recent discussion closely related to the present topic see the introduction of D. H. Van Winkle and N. A. Clark, Phys. Rev. A 38, 1573 (1988). See also J. P. Straley, Phys. Rev. A 4, 675 (1971). [9] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985). [10] See D. H. Van Winkle and N. A. Clark, Phys. Rev. A 38, 1573 (1988). [11] For recent reviews see, e.g., A. D. J. Haymet, Annu. Rev. Phys. Chem. 38, 89 (1987); M. Baus, J. Stat. Phys. 48, 1129 (1987). [12] J. L. Colot, X. G. Wu, H. Xu, and M. Baus, Phys. Rev. A 38, 2022 (1988) (referred to as I). [13] J. L. Colot and M. Baus, Phys. Lett. A 119, 135 (1986). [14] B. J. Berne and P. Pechukas, J. Chem. Phys. 56, 4213 (1972). [15] M. Baus and J. L. Colot, Phys. Rev. A 36, 3912 (1987). [16] N. Ja. Vilenkin, Fonctions Spéciales et Théoric de la Représentation des Groupes (Dunod, Paris, 1969). [17] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). [18] J. Vieillard-Baron, J. Chem. Phys. 56, 4729 (1972). [19] T. Boublik, Mol. Phys. 29, 421 (1975). [20] D. A. Ward and F. Lado, Mol. Phys. 63, 623 (1988). [21] L. Landau and E. Lifchitz, Physique Statistique (Mir, Moscow, 1984). [22] J. L. Colot and M. Baus, Mol. Phys. 56, 807 (1985). [23] See also R. F. Kayser and H. J. Raveche, Phys. Rev. A 17, 2067 (1978). [24] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel, Phys. Rev. A 36, 2929 (1987). [25] Z. Y. Chen, J. Talbot, W. M. Gelbart, and A. Ben-Shaul, Phys. Rev. Lett. 61, 1376 (1988). [26] D. Henderson, Mol. Phys. 30, 971 (1975).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero34.pdf
Size:
492.78 KB
Format:
Adobe Portable Document Format

Collections