Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Linear Fractional Model Theorem and Aleksandrov-Clark measures

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
Citations
Google Scholar

Citation

Gallardo Gutiérrez, E. A. & Nieminen, P. J. «The Linear Fractional Model Theorem and Aleksandrov-Clark Measures». Journal of the London Mathematical Society, vol. 91, n.o 2, abril de 2015, pp. 596-608. DOI.org (Crossref), https://doi.org/10.1112/jlms/jdv002.

Abstract

A remarkable result by Denjoy and Wolff states that every analytic self-map. of the open unit disc D of the complex plane, except an elliptic automorphism, has an attractive fixed point to which the sequence of iterates {phi(n)}(n >= 1) converges uniformly on compact sets: if there is no fixed point in D, then there is a unique boundary fixed point that does the job, called the Denjoy-Wolff point. This point provides a classification of the analytic self-maps of D into four types: maps with interior fixed point, hyperbolic maps, parabolic automorphism maps and parabolic non-automorphism maps. We determine the convergence of the Aleksandrov-Clark measures associated to maps falling in each group of such classification

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections