Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Linear Fractional Model Theorem and Aleksandrov-Clark measures

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorNieminen, Pekka J.
dc.date.accessioned2023-06-19T14:57:21Z
dc.date.available2023-06-19T14:57:21Z
dc.date.issued2015
dc.description.abstractA remarkable result by Denjoy and Wolff states that every analytic self-map. of the open unit disc D of the complex plane, except an elliptic automorphism, has an attractive fixed point to which the sequence of iterates {phi(n)}(n >= 1) converges uniformly on compact sets: if there is no fixed point in D, then there is a unique boundary fixed point that does the job, called the Denjoy-Wolff point. This point provides a classification of the analytic self-maps of D into four types: maps with interior fixed point, hyperbolic maps, parabolic automorphism maps and parabolic non-automorphism maps. We determine the convergence of the Aleksandrov-Clark measures associated to maps falling in each group of such classificationen
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34302
dc.identifier.citationGallardo Gutiérrez, E. A. & Nieminen, P. J. «The Linear Fractional Model Theorem and Aleksandrov-Clark Measures». Journal of the London Mathematical Society, vol. 91, n.o 2, abril de 2015, pp. 596-608. DOI.org (Crossref), https://doi.org/10.1112/jlms/jdv002.
dc.identifier.doi10.1112/jlms/jdv002
dc.identifier.issn0024-6107
dc.identifier.officialurlhttps//doi.org/10.1112/jlms/jdv002
dc.identifier.relatedurlhttp://jlms.oxfordjournals.org/content/91/2/596.abstract
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34941
dc.issue.number2
dc.journal.titleJournal of the London Mathematical Society. Second Series
dc.language.isoeng
dc.page.final608
dc.page.initial596
dc.publisherOxford University Press
dc.relation.projectIDMTM2013-42105-P
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordAnalytic-Functions
dc.subject.keywordUnit disk
dc.subject.keywordIteration
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe Linear Fractional Model Theorem and Aleksandrov-Clark measuresen
dc.typejournal article
dc.volume.number91
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallardo25.pdf
Size:
208.96 KB
Format:
Adobe Portable Document Format

Collections