Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Revuelta, I., Santos-Arteaga, F. J., Montagud-Marrahi, E., Ventura-Aguiar, P., Di Caprio, D., Cofan, F., Cucchiari, D., Torregrosa, V., Piñeiro, G. J., Esforzado, N., Bodro, M., Ugalde-Altamirano, J., Moreno, A., Campistol, J. M., Alcaraz, A., Bayès, B., Poch, E., Oppenheimer, F., & Diekmann, F. (2021). A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients. Artificial Intelligence Review, 54(6), 4653-4684. https://doi.org/10.1007/S10462-021-10008-0

Abstract

In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientifc evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative confgurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artifcial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identifcation of key predictors that permit a sustainable management of resources in a patient-centered model.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections