Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients

dc.contributor.authorRevuelta, Ignacio
dc.contributor.authorSantos Arteaga, Francisco Javier
dc.contributor.authorDiekmann, Fritz
dc.date.accessioned2025-01-14T08:57:39Z
dc.date.available2025-01-14T08:57:39Z
dc.date.issued2021
dc.description.abstractIn an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientifc evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative confgurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artifcial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identifcation of key predictors that permit a sustainable management of resources in a patient-centered model.
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Comercio y Turismo
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationRevuelta, I., Santos-Arteaga, F. J., Montagud-Marrahi, E., Ventura-Aguiar, P., Di Caprio, D., Cofan, F., Cucchiari, D., Torregrosa, V., Piñeiro, G. J., Esforzado, N., Bodro, M., Ugalde-Altamirano, J., Moreno, A., Campistol, J. M., Alcaraz, A., Bayès, B., Poch, E., Oppenheimer, F., & Diekmann, F. (2021). A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients. Artificial Intelligence Review, 54(6), 4653-4684. https://doi.org/10.1007/S10462-021-10008-0
dc.identifier.doi10.1007/s10462-021-10008-0
dc.identifier.issn0269-2821
dc.identifier.issn1573-7462
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114135
dc.issue.number6
dc.journal.titleArtificial Intelligence Review
dc.language.isoeng
dc.page.final4684
dc.page.initial4653
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordCOVID-19
dc.subject.keywordKidney transplant
dc.subject.keywordData envelopment analysis
dc.subject.keywordArtifcial neural network
dc.subject.keywordLogistic regression
dc.subject.keywordRandom forest
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmMedicina
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco3201 Ciencias Clínicas
dc.titleA hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
dc.typejournal article
dc.volume.number54
dspace.entity.typePublication
relation.isAuthorOfPublicationc9e4f16c-37ee-48be-b56b-6b479d2b3cab
relation.isAuthorOfPublication.latestForDiscoveryc9e4f16c-37ee-48be-b56b-6b479d2b3cab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AIRE.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format

Collections