A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
dc.contributor.author | Revuelta, Ignacio | |
dc.contributor.author | Santos Arteaga, Francisco Javier | |
dc.contributor.author | Diekmann, Fritz | |
dc.date.accessioned | 2025-01-14T08:57:39Z | |
dc.date.available | 2025-01-14T08:57:39Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientifc evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative confgurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artifcial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identifcation of key predictors that permit a sustainable management of resources in a patient-centered model. | |
dc.description.department | Depto. de Economía Financiera y Actuarial y Estadística | |
dc.description.faculty | Fac. de Comercio y Turismo | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Revuelta, I., Santos-Arteaga, F. J., Montagud-Marrahi, E., Ventura-Aguiar, P., Di Caprio, D., Cofan, F., Cucchiari, D., Torregrosa, V., Piñeiro, G. J., Esforzado, N., Bodro, M., Ugalde-Altamirano, J., Moreno, A., Campistol, J. M., Alcaraz, A., Bayès, B., Poch, E., Oppenheimer, F., & Diekmann, F. (2021). A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients. Artificial Intelligence Review, 54(6), 4653-4684. https://doi.org/10.1007/S10462-021-10008-0 | |
dc.identifier.doi | 10.1007/s10462-021-10008-0 | |
dc.identifier.issn | 0269-2821 | |
dc.identifier.issn | 1573-7462 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/114135 | |
dc.issue.number | 6 | |
dc.journal.title | Artificial Intelligence Review | |
dc.language.iso | eng | |
dc.page.final | 4684 | |
dc.page.initial | 4653 | |
dc.publisher | Springer | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 004.8 | |
dc.subject.keyword | COVID-19 | |
dc.subject.keyword | Kidney transplant | |
dc.subject.keyword | Data envelopment analysis | |
dc.subject.keyword | Artifcial neural network | |
dc.subject.keyword | Logistic regression | |
dc.subject.keyword | Random forest | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.ucm | Medicina | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.subject.unesco | 3201 Ciencias Clínicas | |
dc.title | A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients | |
dc.type | journal article | |
dc.volume.number | 54 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c9e4f16c-37ee-48be-b56b-6b479d2b3cab | |
relation.isAuthorOfPublication.latestForDiscovery | c9e4f16c-37ee-48be-b56b-6b479d2b3cab |
Download
Original bundle
1 - 1 of 1