Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On interpolation of bilinear operators by methods associated to polygons

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1999

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Unione matematica italiana
Citations
Google Scholar

Citation

Abstract

The authors investigate the behaviour of bilinear operators under interpolation by the methods associated to polygons. These methods, working with N-tuples (N _ 3) of Banach spaces instead of couples, were introduced by F. Cobos and J. Peetre [Proc. Lond. Math. Soc., III. Ser. 63, 371-400 (1991; Zbl 0727.46053)]. The main properties of methods defined by polygons are summarized and then a bilinear interpolation theorem for a combination of the K- and J-methods is established. Another bilinear interpolation theorem for the J-method is given and a counterexample shows that a similar result fails for the K-method. The final part contains an application to interpolation of operator spaces starting from Banach lattices.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections