On interpolation of bilinear operators by methods associated to polygons

dc.contributor.authorCobos, Fernando
dc.contributor.authorCordeiro, José María
dc.contributor.authorMartínez, Antón
dc.description.abstractThe authors investigate the behaviour of bilinear operators under interpolation by the methods associated to polygons. These methods, working with N-tuples (N _ 3) of Banach spaces instead of couples, were introduced by F. Cobos and J. Peetre [Proc. Lond. Math. Soc., III. Ser. 63, 371-400 (1991; Zbl 0727.46053)]. The main properties of methods defined by polygons are summarized and then a bilinear interpolation theorem for a combination of the K- and J-methods is established. Another bilinear interpolation theorem for the J-method is given and a counterexample shows that a similar result fails for the K-method. The final part contains an application to interpolation of operator spaces starting from Banach lattices.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.identifier.citationS. V. ASTASHKIN, On interpolation of bilinear operators with a real method, Mat. Zametki, 52 (1992), 15-24. J. BERGH - J. LÖFSTRÖM, «Interpolation Spaces. An Introduction», Springer, Berlin-Heidelberg-New York (1976). F. COBOS - P. FERNÁNDEZ-MARTÍNEZ, A duality theorem for interpolation methods associated to polygons, Proc. Amer. Math. Soc. 121, (1994), 1093-1101. F. COBOS - P. FERNÁNDEZ-MARTÍNEZ - A. MARTÍNEZ, On reiteration and the behavior of weak compactness under certain interpolation methods, Collect. Math. (to appear). F. COBOS - P. FERNÁNDEZ-MARTÍNEZ, A. MARTÍNEZ - Y. RAYNAUD, On duality between K- and J-spaces, Proc. Edinburgh Math. Soc. (to appear). F. COBOS - P. FERNÁNDEZ-MARTÍNEZ - T. SCHONBEK, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory, 80 (1995), 321-351. F. COBOS - J. PEETRE, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc., 63 (1991), 371-400. M. CWIKEL - S. JANSON, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. Math., 66 (1987), 234-290. A. FAVINI, Some results on interpolation of bilinear operators, Boll. Un. Mat. Ital., 15 (1978), 170-181. D. L. FERNÁNDEZ, Interpolation of 2d Banach spaces and the Calderón spaces X(E), Proc. London Math. Soc., 56 (1988), 143-162. S. JANSON, On interpolation of multi-linear operators, in Function Spaces and Applications, Proceedings, Lund 1986, Lect. Notes Math., 1302 (1988), 290-302. J. L. LIONS - J. PEETRE, Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes Sci. Publ. Math., 19 (1964), 5-68. J. PEETRE, Paracommutators and minimal spaces, in Operators and Funtion Theory,Proceedings of the NATO Advanced Study Institute on Operators and Function Theory, Lancaster, 1984, ed. S. C. Power, Reidel, Dordrecht (1985), 163-223. G. SPARR, Interpolation of several Banach spaces, Ann. Math. Pura Appl., 99 (1974), 247-316. H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam (1978). M. ZAFRAN, A multilinear interpolation theorem, Studia Math., 62 (1978), 107-124.
dc.journal.titleBollettino della Unione Matematica Italiana
dc.publisherUnione matematica italiana
dc.rights.accessRightsrestricted access
dc.subject.keywordBehaviour of bilinear operators under interpolation
dc.subject.keywordmethods defined by polygons
dc.subject.keywordcombination of the K- and J-methods
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleOn interpolation of bilinear operators by methods associated to polygons
dc.typejournal article
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
225.99 KB
Adobe Portable Document Format