Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From integrable nets to integrable lattices

dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:08:59Z
dc.date.available2023-06-20T20:08:59Z
dc.date.issued2002-05
dc.description©2002 American Institute of Physics. This work was partially supported by Direction General de Enseñanza Superior e Investigación Científica proyecto PB98-0821
dc.description.abstractInspired by the results of Jonas, Einsenhart, Demoulin, and Bianchi on the permutability property of classical geometrical transformations of conjugate nets and its reductions-of pseudo-orthogonal, pseudo-symmetric, and pseudo-Egorov types-dressing transformations of the N-component KP hierarchy (described within the Grassmannian) are used to generate quadrilateral lattices and its corresponding reductions. As a byproduct we get the corresponding discrete dressing transformations; in particular, we characterize the vectorial fundamental discrete transformations preserving the symmetric lattice.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirection General de Enseñanza Superior e Investigación Científica
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32451
dc.identifier.doi10.1063/1.1454185
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1454185
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59683
dc.issue.number5
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final2546
dc.page.initial2523
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB98-0821
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordCircular lattices
dc.subject.keywordLame equations
dc.subject.keywordRibaucour transformations
dc.subject.keywordQuadrilateral lattices
dc.subject.keywordCoordinate systems
dc.subject.keywordDressing methods
dc.subject.keywordConjugate nets
dc.subject.keywordGeometric nets
dc.subject.keywordField-theory
dc.subject.keywordDiscrete
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleFrom integrable nets to integrable lattices
dc.typejournal article
dc.volume.number43
dcterms.references1. A. Doliwa, P. M. Santini, and M. Mañas, J. Math. Phys. 41, 944 (2000). 2. H. Jonas, Berl. Math. Ges. Ber. Sitzungsber. 14, 96 (1915). 3. L. P. Eisenhart, Trans. Am. Math. Soc. 18, 111 (1917). 4. L. P. Eisenhart, Transformations of Surfaces (Princeton University Press, Princeton, NJ, 1923) [reprint (Chelsea, New York, 1962)]. 5. D. Levi and R. Benguria, Proc. Natl. Acad. Sci. U.S.A. 77, 5025 (1980). 6. J. J. C. Nimmo and W. K. Schief, Proc. R. Soc. London, Ser. A 453, 255 (1997). 7. J. Ciesliński, A. Doliwa, and P. M. Santini, Phys. Lett. A 235, 480 (1997). 8. M. A. Demoulin, C. R. Acad. Sci. Paris 150, 156 (1910). 9. L. Bianchi, Lezioni di Geometria Differenziale 3rd ed. (Zanichelli, Bologna, 1924). 10. A. Ribaucour, C. R. Acad. Sci. Paris 74, 1489 (1869). 11. A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, and P. M. Santini, J. Phys. A 32, 1197 (1999). 12. M. Mañas and L. Martínez Alonso, Phys. Lett. B 436, 316 (1998). 13. A. Doliwa, M. Mañas, and Luis Martínez Alonso, Phys. Lett. A 262, 330 (1999). 14. M. Mañas, L. Martínez Alonso, and E. Medina, J. Phys. A 33, 2871 (2000). 15. M. Mañas, L. Martínez Alonso, and E. Medina, J. Phys. A 33, 7181 (2000). 16. G. Segal and G. Wilson, Publ. Math. I. H. E. S. 61 5 (1985). 17. E. Witten, Commun. Math. Phys. 113, 529 (1988). 18. A. Doliwa and P. M. Santini, J. Geom. Phys. 36, 60 (2000). 19. M. Mañas, A. Doliwa, and P. M. Santini, Phys. Lett. A 232, 365 (1997). 20. B. G. Konopelchenko and W. K. Schief, Proc. R. Soc. London, Ser. A 454, 3075 (1998). 21. Q. P. Liu and M. Mañas, J. Phys. A 31, L193 (1998). 22. A. Doliwa, J. Geom. Phys. 30, 169 (2000). 23. V. E. Zakharov and S. E. Manakov, Funct. Anal. Appl. 19, 89 (1985). 24. V. E. Zakharov, Duke Math. J. 94, 103 (1998); V. E. Zakharov and S. E. Manakov, Dokl. Math. 57, 471 (1998). 25. G. Darboux, Lec¸ons sur la théorie genérale des surfaces IV (Gauthier-Villars, Paris, 1896) [reprint (Chelsea, New York, 1972)]. 26. G. Lamé, Leçons sur la théorie des coordenées curvilignes et leurs diverses applications (Mallet- Bachalier, Paris 1859). 27. G. Darboux, Leçons sur les systèmes orthogonaux et les coordenées curvilignes (deuxième édition) (Gauthier-Villars, Paris, 1910) (the first edition was in 1897) [reprint [Éditions Jacques Gabay, Sceaux 1993)]. 28. D.-Th. Egorov, C. R. Acad. Sci. Paris 131, 668 (1900); 132, 174 (1901). 29. B. Dubrovin, Nucl. Phys. B 79, 627 (1992); B. Dubrovin and Y. Zhang, Commun. Math. Phys. 198, 311 (1998). 30. E. Witten, Nucl. Phys. B 340, 281 (1990). 31. E. P. Lane, Projective Differential Geometry of Curves and Surfaces (University of Chicago, Chicago, 1932). 32. R. Sauer, Differenzengeometrie (Springer- Serlag, Berlin, 1970). 33. A. Doliwa and P. M. Santini, Phys. Lett. A 233, 365 (1997). 34. R. R. Martin, in The Mathematics of Surfaces, edited by J. Gregory (Clarendon, Oxford, 1986); A. W. Nutborne, in The Mathematics of Surfaces, edited by J. Gregory (Clarendon, Oxford, 1986). 35. A. Bobenko in Symmetries and Integrability of Difference Equations II, edited by P. Clarckson and F. Nijhoff (Cambridge University Press, Cambridge, 1996); A. Bobenko and U. Pinkall, J. Diff. Geom. 43, 527 (1996); J. Reine Angew. Math. 475, 187 (1996); A. Bobenko and W. K. Schief, in Discrete Integrable Geometry and Physics, edited by A. Bobenko and R. Seiler (Oxford University Press, Oxford, 1998). 36. A. Doliwa, S. V. Manakov, and P. M. Santini, Commun. Math. Phys. 196, 1 (1998). 37. Q. P. Liu and M. Mañas, Phys. Lett. A 249, 424 (1998). 38. P. G. Grinevich and A. Yu. Orlov, Virasoro Action on Riemann Surfaces, Grassmannians, det¯δJ . and Segal-Wilson t-Function in Problems of Modern Quantum Field Theory, edited by A. A. Belavin, A. V. Klimyk, and A. B. Zamolodchikov (Springer, Berlin, 1989). 39. P. G. Grinevich and A. Yu. Orlov, Funct. Anal. Appl. 24, 61 (1990); L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys. 39, 4701 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas22libre.pdf
Size:
517.92 KB
Format:
Adobe Portable Document Format

Collections