Publication: Singular sector of the Kadomtsev–Petviashvili hierarchy, δ̅ operators of nonzero index, and associated integrable systems
Loading...
Official URL
Full text at PDC
Publication Date
2000-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Abstract
Integrable hierarchies associated with the singular sector of the Kadomtsev– Petviashvili (KP) hierarchy, or equivalently, with δ̅ operators of nonzero index are studied. They arise as the restriction of the standard KP hierarchy to submanifolds of finite codimension in the space of independent variables. For higher δ̅ index these hierarchies represent themselves as families of multidimensional equations with multidimensional constraints. The δ̅ -dressing method is used to construct these hierarchies. Hidden Korteweg–de Vries, Boussinesq, and hidden Gelfand–Dikii hierarchies are considered, too.
Description
©2000 American Institute of Physics.
This work was partially supported by CICYT Proyecto No. PB95-0401.
UCM subjects
Unesco subjects
Keywords
Citation
1. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevski, Theory of Solitons (Nauka, Moscow, 1984).
2. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform (SIAM, Philadelphia, 1981).
3. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991).
4. B. G. Konopelchenko, Solitons in Multidimensions (World Scientific, Singapore, 1993).
5. E. Witten, Commun. Math. Phys. 113, 529 (1988).
6. L. Alvarez-Gaume, C. Gomez, G. Moore and C. Vafa, Nucl. Phys. B 303, 455 (1988).
7. R. Dijkgraaf, Intersection Theory, Integrable Hierarchies and Topological Field Theory, in New Symmetry Principles in Quantum Field Theory, NATO ASI Cargese, 1991 (Plenum, London, 1991).
8. P. Van Moerbeke, Integrable Foundations of String Theory, in Lectures on Integrable Systems, edited by O. Babelon et al. (World Scientific, Singapore, 1994).
9. T. Shiota, Invent. Math. 83, 333 (1986).
10. M. Sato, RIMS Kokyuroku 433, 30 (1981); The KP Hierarchy and Infinite-Dimensional Grassmann Manifolds in Theta Functions—Bowdoin 1987. Part 1, Proceedings of the Symposium of Pure Mathematics V. 1. 49, Part 1 (AMS, Providence, 1989), p. 51.
11. E. Date, M. Kashiwara and T. Miwa, ‘‘Transformation Groups for Soliton Equations,’’ in Nonlinear Integrable SystemsClassical Theory and Quantum Theory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983).
12. M. Jimbo and T. Miwa, Publ. RIMS Kyoto University 19, 943 (1983).
13. G. Segal and G. Wilson, Publ. Math. I. H. E. S. 61, 5 (1985).
14. V. E. Zakharov and S. V. Manakov, Funk. Anal. Ego. Prilozh. 19, 11 (1985).
15. L. V. Bogdanov and S. V. Manakov, J. Phys. A 21, L719 (1988).
16. V. E. Zakharov, in Inverse Methods in Action, edited by P. C. Sabatier (Springer, Berlin, 1990).
17. L. V. Bogdanov and V. E. Zakharov, St. Petersburg Math. J. 6, 475 (1995).
18. H. Airault, M. McKean, and J. Moser, Commun. Pure Appl. Math. 30, 95 (1977).
19. D. V. Choodnovsky and G. V. Choodnovsky, Nuovo Cimento B 40, 39 (1977).
20. I. M. Krichever, Funct. Anal. Appl. 12, 76 (1978).
21. J. Weiss, M. Tabor, and J. Carnevale, J. Math. Phys. 24, 522 (1983).
22. J. Weiss, J. Math. Phys. 24, 1405 (1983).
23. A. Ramani, B. Grammaticos, and T. Bountis, Phys. Rep. 180, 159 (1989).
24. J. Weiss, ‘‘Backlund transformations and Painleve property,’’ in Solitons in Physics, Mathematics and Nonlinear Optics, edited by P. Olver and D. Sattinger (Springer, Berlin, 1986).
25. P. G. Estevez and P. R. Gordoa, Stud. Appl. Math. 95, 73 (1995).
26. A. Pickering, talk given at NEEDS 97, Crete, July 1997.
27M. Adler and P. van Moerbeke, Adv. Math. 108, 140 (1994).
28. M. Adler and P. van Moerbeke, Math. Ann. 296, 1 (1993).
29. H. Flaschka, A. C. Newell, and M. Tabor, ‘‘Integrability,’’ in What is Integrability? edited by V. E. Zakharov (Springer, Berlin, 1991).
30. M. Mañas, L. Martínez Alonso, and E. Medina, J. Phys. A 30, 4815 (1997).
31. P. G. Grinevich and A. Yu. Orlov, in Problems of Modern Quantum Field Theory, edited by A. A. Belavin et al. (Springer, Berlin, 1989), p 86.
32. A. Degasperis, S. V. Manakov, and A. I. Zenchuk, (unpublished).
33. A. I. Zenchuk, Pis’ma Zh. Eksp. Teor. Fiz. 66, 206 (1997).
34. M. Jaulent, M. A. Manna, and L. Martínez Alonso, J. Phys. A 21, L1019 (1988).
35. M. Jaulent, M. A. Manna, and L. Martínez Alonso, J. Phys. A 22, L13 (1989).
36. P. M. Santini, Inverse Probl. 8, 285 (1992).
37. L. Martínez Alonso, J. Math. Phys. 21, 2342 (1980).
38. M. Antonowicz and A. P. Fordy, Physica D 28, 345 (1987).
39. A. P. Fordy, A. G. Reyman, and M. A. Semenov- Tian-Shansky, Lett. Math. Phys. 17, 25 (1989).
40. M. Antonowicz, A. P. Fordy, and Q. P. Liu, Nonlinearity 4, 669 (1991).
41. B. Konopelchenko and L. Martínez Alonso, Phys. Lett. A 236, 431 (1997).
42A. Pressley and G. Segal, Loop Groups (Oxford University Press, Oxford, 1986).