Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Role of synthetic plant extracts on the production of silver-derived nanoparticles

dc.contributor.authorAl-Zahrani, Sabah
dc.contributor.authorAstudillo Calderón, Sergio
dc.contributor.authorPintos López, Beatriz
dc.contributor.authorPérez-Urria Carril, Elena
dc.contributor.authorManzanera, José Antonio
dc.contributor.authorMartín Calvarro, Luisa
dc.contributor.authorGómez Garay, Arancha
dc.date.accessioned2023-06-16T14:21:28Z
dc.date.available2023-06-16T14:21:28Z
dc.date.issued2021-08-13
dc.description.abstractThe main antioxidants present in plant extracts—quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin—are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows the characteristic surface plasmon resonance band of silver nanoparticles. Nanoparticles synthesised with ascorbic, hydroxybenzoic, caffeic, and gallic acids and scopoletin are spherical. Nanoparticles synthesised with quercetin are grouped together to form micellar structures. Nanoparticles synthesised by β-carotene, were triangular and polyhedral forms with truncated corners. Pentagonal nanoparticles were synthesized with catechin. We used Fourier-transform infrared spectroscopy to check that the biomolecules coat the synthesised silver nanoparticles. X-ray powder diffractograms showed the presence of silver, AgO, Ag2O, Ag3O4 and Ag2O3 . Rod-like structures were obtained with quercetin and gallic acid and cookie-like structures in the nanoparticles obtained with scopoletin, as a consequence of their reactivity with cyanide. This analysis explained the role played by the various agents responsible for the bio-reduction triggered by nanoparticle synthesis in their shape, size and activity. This will facilitate targeted synthesis and the application of biotechnological techniques to optimise the green synthesis of nanoparticles.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/71390
dc.identifier.doi10.3390/plants10081671
dc.identifier.issn2223-7747
dc.identifier.officialurlhttps://doi.org/10.3390/plants10081671
dc.identifier.relatedurlhttps://www.mdpi.com/2223-7747/10/8/1671
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4805
dc.issue.number8
dc.journal.titlePlants
dc.language.isoeng
dc.page.final18
dc.page.initial1
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu581.13
dc.subject.cdu539.2:620.1
dc.subject.keywordSilver nanoparticles
dc.subject.keywordPlant non-enzymatic antioxidants
dc.subject.keywordMicellar structures
dc.subject.keywordCyanide
dc.subject.ucmFisiología vegetal (Biología)
dc.subject.unesco2417.19 Fisiología Vegetal
dc.titleRole of synthetic plant extracts on the production of silver-derived nanoparticles
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication962672dc-8717-4d6d-87a0-c6be3c6f1d4d
relation.isAuthorOfPublication13305a01-95dd-45ee-8868-288e64278b3e
relation.isAuthorOfPublication.latestForDiscovery962672dc-8717-4d6d-87a0-c6be3c6f1d4d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Al-Zahrani S. et al. 2021. Role of Synthetic Plant Extracts on the Production....pdf
Size:
5.91 MB
Format:
Adobe Portable Document Format

Collections