Global aspects of bracket-generating distributions
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
28/04/2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
El tema central e hilo conductor de esta tesis doctoral es el estudio de propiedades globales de distribuciones generadoras por corchete. En las dos primeras partes hemos centrado nuestra atención en el estudio de encajes regulares tangentes y transversos a este tipo de distribuciones. Hemos clasificado las curvas embebidas horizontales y transversas en cualquier variedad dedimensión mayor que 3 (i.e. hemos probado que existe un h-principio completo). Esto contrasta con el caso 3-dimensional de contacto, donde es bien sabido que no existe h−principio para curvas legendrianas/transversas...
The central topic of this PhD thesis is the study of global properties of bracket–generating distributions. In the first two parts we focus our attention on the study of tangent and transverse embeddings to these type of distributions. We have classified regular embedded and transverse curves into any manifold of dimension greater than 3 (i.e. we have proved that there exists a complete h−principle). This contrasts with the 3-dimensional contact case, where it is well known that an h−principle for legendrian/transverse embedded curves does not hold...
The central topic of this PhD thesis is the study of global properties of bracket–generating distributions. In the first two parts we focus our attention on the study of tangent and transverse embeddings to these type of distributions. We have classified regular embedded and transverse curves into any manifold of dimension greater than 3 (i.e. we have proved that there exists a complete h−principle). This contrasts with the 3-dimensional contact case, where it is well known that an h−principle for legendrian/transverse embedded curves does not hold...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 28-04-2023