Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Associate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces

dc.contributor.authorBesoy, Blanca F.
dc.contributor.authorCobos, Fernando
dc.date.accessioned2023-06-15T06:21:22Z
dc.date.available2023-06-15T06:21:22Z
dc.date.issued2019
dc.description.abstractWe determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD)
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/56900
dc.identifier.issn1798-2383
dc.identifier.urihttps://hdl.handle.net/20.500.14352/162
dc.journal.titleAnnales Academiae Scientiarum Fennicae Mathematica
dc.language.isoeng
dc.relation.projectIDMTM2017-84508-P
dc.relation.projectIDFPU16/02420
dc.rights.accessRightsopen access
dc.subject.cdu515.175.2
dc.subject.cdu517.982.22
dc.subject.keywordBanach function Spaces
dc.subject.keywordGeneralized Lorentz-Zygmund spaces
dc.subject.keyworddescription of K-spaces in terms of the J-functional
dc.subject.keywordgeneralized Lorentz-Zygmund spaces
dc.subject.keywordEspacios de Banach
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAssociate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces
dc.typejournal article
dcterms.references[1] C. Bennett and R. Sharpley, “Interpolation of Operators”, Academic Press, Boston, 1988. [2] J. Bergh and J. L¨ofstro¨m, “Interpolation Spaces. An Introduction”, Springer, Berlin, 1976. [3] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applica- tions, J. Math. Anal. Appl. 466 (2018), 373-399. [4] B.F. Besoy, F. Cobos and L.M. Fern´andez-Cabrera, On the structure of a limit class of logarithmic interpolation spaces, preprint, Madrid (2019). [5] F. Cobos and L.M. Fern´andez-Cabrera, The fundamental function of certain interpolation spaces generated by N -tuples of rearrangement-invariant spaces, in “Function Spaces and Inequalities”. Edited by P. Jain and H.-J. Schmeisser, Springer, Singapore, 2017, pp. 1-14. [6] F. Cobos, L.M. Fern´andez-Cabrera and A. Mart´ınez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015) 167-175. [7] F. Cobos and J. Mart´ın, On interpolation of function spaces by methods defined by means of polygons, J. Appox. Theory 132 (2005) 182-203. [8] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J. functional and applications, J. Funct. Anal. 268 (2015) 2906-2945. [9] D.E. Edmunds and W.D. Evans, “Hardy Operators, Function Spaces and Embeddings ”, Springer, Berlin, 2004. [10] D.E. Edmunds and B. Opic, Limiting variants of Krasnosel’ski˘i’s compact interpolation theorem, J. Funct. Anal. 266 (2014) 3265-3285. [11] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000) 920-960. [12] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002) 187-269. [13] L. M. Fern´andez-Cabrera, The fundamental function of spaces generated by interpolation methods associated to polygons, Mediterr. J. Math. (2017) 14:17. [14] S.G. Kre˘in, Ju.I. Petunin and E.M. Semenov, “Interpolation of Linear Operators”, Amer. Math. Soc., Providence, 1982. [15] P. Meyer-Nieberg, “Banach Lattices”, Springer, Berlin, 1991. [16] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999) 391- 467. [17] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland, Ams- terdam, 1978. [18] A.C. Zaanen, “Integration”, North-Holland, Amsterdam, 1967.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Besoy.pdf
Size:
230.06 KB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2023-06-15 09:49:11
Version created in EPrints
1*
2023-06-15 09:49:11
Version created in EPrints
* Selected version