This is not the latest version of this item. The latest version can be found here.
Associate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces
dc.contributor.author | Besoy, Blanca F. | |
dc.contributor.author | Cobos, Fernando | |
dc.date.accessioned | 2023-06-15T06:21:22Z | |
dc.date.available | 2023-06-15T06:21:22Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO)/FEDER | |
dc.description.sponsorship | Ministerio de Educación, Cultura y Deporte (MECD) | |
dc.description.status | inpress | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/56900 | |
dc.identifier.issn | 1798-2383 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/162 | |
dc.journal.title | Annales Academiae Scientiarum Fennicae Mathematica | |
dc.language.iso | eng | |
dc.relation.projectID | MTM2017-84508-P | |
dc.relation.projectID | FPU16/02420 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.175.2 | |
dc.subject.cdu | 517.982.22 | |
dc.subject.keyword | Banach function Spaces | |
dc.subject.keyword | Generalized Lorentz-Zygmund spaces | |
dc.subject.keyword | description of K-spaces in terms of the J-functional | |
dc.subject.keyword | generalized Lorentz-Zygmund spaces | |
dc.subject.keyword | Espacios de Banach | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Associate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces | |
dc.type | journal article | |
dcterms.references | [1] C. Bennett and R. Sharpley, “Interpolation of Operators”, Academic Press, Boston, 1988. [2] J. Bergh and J. L¨ofstro¨m, “Interpolation Spaces. An Introduction”, Springer, Berlin, 1976. [3] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applica- tions, J. Math. Anal. Appl. 466 (2018), 373-399. [4] B.F. Besoy, F. Cobos and L.M. Fern´andez-Cabrera, On the structure of a limit class of logarithmic interpolation spaces, preprint, Madrid (2019). [5] F. Cobos and L.M. Fern´andez-Cabrera, The fundamental function of certain interpolation spaces generated by N -tuples of rearrangement-invariant spaces, in “Function Spaces and Inequalities”. Edited by P. Jain and H.-J. Schmeisser, Springer, Singapore, 2017, pp. 1-14. [6] F. Cobos, L.M. Fern´andez-Cabrera and A. Mart´ınez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015) 167-175. [7] F. Cobos and J. Mart´ın, On interpolation of function spaces by methods defined by means of polygons, J. Appox. Theory 132 (2005) 182-203. [8] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J. functional and applications, J. Funct. Anal. 268 (2015) 2906-2945. [9] D.E. Edmunds and W.D. Evans, “Hardy Operators, Function Spaces and Embeddings ”, Springer, Berlin, 2004. [10] D.E. Edmunds and B. Opic, Limiting variants of Krasnosel’ski˘i’s compact interpolation theorem, J. Funct. Anal. 266 (2014) 3265-3285. [11] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000) 920-960. [12] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002) 187-269. [13] L. M. Fern´andez-Cabrera, The fundamental function of spaces generated by interpolation methods associated to polygons, Mediterr. J. Math. (2017) 14:17. [14] S.G. Kre˘in, Ju.I. Petunin and E.M. Semenov, “Interpolation of Linear Operators”, Amer. Math. Soc., Providence, 1982. [15] P. Meyer-Nieberg, “Banach Lattices”, Springer, Berlin, 1991. [16] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999) 391- 467. [17] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland, Ams- terdam, 1978. [18] A.C. Zaanen, “Integration”, North-Holland, Amsterdam, 1967. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1