Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Associate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces

dc.contributor.authorBesoy, Blanca F.
dc.contributor.authorCobos, Fernando
dc.date.accessioned2023-06-15T06:21:22Z
dc.date.available2023-06-15T06:21:22Z
dc.date.issued2019
dc.description.abstractWe determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD)
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/56900
dc.identifier.issn1798-2383
dc.identifier.urihttps://hdl.handle.net/20.500.14352/162
dc.journal.titleAnnales Academiae Scientiarum Fennicae Mathematica
dc.language.isoeng
dc.relation.projectIDMTM2017-84508-P
dc.relation.projectIDFPU16/02420
dc.rights.accessRightsopen access
dc.subject.cdu515.175.2
dc.subject.cdu517.982.22
dc.subject.keywordBanach function Spaces
dc.subject.keywordGeneralized Lorentz-Zygmund spaces
dc.subject.keyworddescription of K-spaces in terms of the J-functional
dc.subject.keywordgeneralized Lorentz-Zygmund spaces
dc.subject.keywordEspacios de Banach
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAssociate spaces of logarithmic interpolation spaces and generalized Lorentz-Zygmund spaces
dc.typejournal article
dcterms.references[1] C. Bennett and R. Sharpley, “Interpolation of Operators”, Academic Press, Boston, 1988. [2] J. Bergh and J. L¨ofstro¨m, “Interpolation Spaces. An Introduction”, Springer, Berlin, 1976. [3] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applica- tions, J. Math. Anal. Appl. 466 (2018), 373-399. [4] B.F. Besoy, F. Cobos and L.M. Fern´andez-Cabrera, On the structure of a limit class of logarithmic interpolation spaces, preprint, Madrid (2019). [5] F. Cobos and L.M. Fern´andez-Cabrera, The fundamental function of certain interpolation spaces generated by N -tuples of rearrangement-invariant spaces, in “Function Spaces and Inequalities”. Edited by P. Jain and H.-J. Schmeisser, Springer, Singapore, 2017, pp. 1-14. [6] F. Cobos, L.M. Fern´andez-Cabrera and A. Mart´ınez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015) 167-175. [7] F. Cobos and J. Mart´ın, On interpolation of function spaces by methods defined by means of polygons, J. Appox. Theory 132 (2005) 182-203. [8] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J. functional and applications, J. Funct. Anal. 268 (2015) 2906-2945. [9] D.E. Edmunds and W.D. Evans, “Hardy Operators, Function Spaces and Embeddings ”, Springer, Berlin, 2004. [10] D.E. Edmunds and B. Opic, Limiting variants of Krasnosel’ski˘i’s compact interpolation theorem, J. Funct. Anal. 266 (2014) 3265-3285. [11] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000) 920-960. [12] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002) 187-269. [13] L. M. Fern´andez-Cabrera, The fundamental function of spaces generated by interpolation methods associated to polygons, Mediterr. J. Math. (2017) 14:17. [14] S.G. Kre˘in, Ju.I. Petunin and E.M. Semenov, “Interpolation of Linear Operators”, Amer. Math. Soc., Providence, 1982. [15] P. Meyer-Nieberg, “Banach Lattices”, Springer, Berlin, 1991. [16] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999) 391- 467. [17] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland, Ams- terdam, 1978. [18] A.C. Zaanen, “Integration”, North-Holland, Amsterdam, 1967.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Besoy.pdf
Size:
230.06 KB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2023-06-15 09:49:11
Version created in EPrints
1*
2023-06-15 09:49:11
Version created in EPrints
* Selected version