Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

High Resolution Fourier-Transform Microspectroscopy Based on Spiral Silicon Waveguides

dc.book.title2013 15th International Conference On Transparent Optical Networks (ICTON 2013)
dc.contributor.authorFlorjańczyk, Miroslaw
dc.contributor.authorVillafranca Velasco, Aitor
dc.contributor.authorCheben, Pavel
dc.contributor.authorCalvo Padilla, María Luisa
dc.contributor.authorBock, Przemek J.
dc.contributor.authorDelâge, André
dc.contributor.authorSchmid, Jens H.
dc.contributor.authorLapointe, Jean
dc.contributor.authorJanz, Siegfried
dc.contributor.authorXu, Dan-Xia
dc.contributor.authorVachon, Martin
dc.date.accessioned2023-06-19T15:54:14Z
dc.date.available2023-06-19T15:54:14Z
dc.date.issued2013
dc.description©2013 IEEE. Financial support from the National Research Council and the Spanish Ministry of Economy is acknowledged under grants TEC2008-04105 and TEC2011-23629. International Conference on Transparent Optical Networks (ICTON) (15ª. 2003. Cartagena, España).
dc.description.abstractWe report a spatial heterodyne Fourier-transform spectrometer consisting of an array of Mach-Zehnder interferometers (MZI) implemented in silicon microphotonics. Optical path differences between the MZI arms increase linearly along the array, generating a wavelength-dependent interferogram which enables the retrieval of the source spectrum with a single measurement. Optical delays were implemented with Si-wire waveguides arranged in tightly coiled spirals to achieve a high resolution in a reduced footprint. Our spectral retrieval algorithm compensates phase and amplitude errors arising from fabrication imperfections by using a transformation matrix based on the calibration data. A wavelength resolution of 40 pm within a free spectral range of 0.75 nm is demonstrated.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNational Research Council, Canadá
dc.description.sponsorshipMinisterio de Economía, España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25299
dc.identifier.doi10.1109/ICTON.2013.6602863
dc.identifier.isbn978-1-4799-0683-3
dc.identifier.officialurlhttp://dx.doi.org/10.1109/ICTON.2013.6602863
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35683
dc.language.isoeng
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc.
dc.relation.projectIDTEC2008-04105
dc.relation.projectIDTEC2011-23629
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSpatial Heterodyne Spectrometer
dc.subject.keywordOn-Insulator
dc.subject.keywordGrating Demultiplexer
dc.subject.keywordChip
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleHigh Resolution Fourier-Transform Microspectroscopy Based on Spiral Silicon Waveguides
dc.typebook part
dcterms.references[1] P. Cheben, "Wavelength dispersive planar waveguide devices: Echelle gratings and arrayed waveguide gratings," in Optical Waveguides: From Theory to Applied Technologies, Eds. M. L. Calvo and V. Laksminarayanan, Chapter 5, CRC Press, London, 2007. [2] P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides,” Opt. Express, vol. 15, pp. 2299-2306, 2007. [3] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P.A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett., vol. 16, pp. 503–505, 2004. [4] J. Brouckaert, W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol., vol. 25, pp. 1269–1275, 2007. [5] T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue and H. Takahasi, “Lattice-form CWDM interleave filter using silica-based planar lightwave circuit”, IEEE Photon. Technol. Lett., vol. 18, pp. 1570-1572, 2006. [6] F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express, vol. 15, pp. 11934–11941, 2007. [7] P. Bock, P. Cheben, J. Schmid, A. V. Velasco, A. Delâge, S. Janz, D.-X. Xu, J. Lapointe, T. J. Hall and M. L. Calvo, “Demonstration of a curved sidewall grating demultiplexer on silicon”, Opt. Express, vol. 20, pp. 19882-19892, 2012. [8] A. V. Velasco, P. J. Bock, P. Cheben, M. L. Calvo, J. H. Schmid, J. Lapointe, D.-X. Xu, S. Janz and A. Delâge, “Bandpass filter implemented with blazed waveguide sidewall gratings in silicon-on-insulator”, Electron. Lett., vol. 48, pp. 715-717, 2012. [9] P. Cheben, I. Powell, S. Janz, and D.-X. Xu, “Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett., vol. 30, pp. 1824-1826, 2005. [10] M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D. X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,“ Opt. Express, vol. 15, pp. 18176-18178, 2007. [11] J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “A spatial heterodyne spectrometer for remote sensing of earth middle atmosphere” Appl. Opt., vol. 41, pp. 1343-1345, 2002. [12] K. Okamoto, H. Aoyagi, and K. Takada, “Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide,” Opt. Lett., vol. 35, pp. 2103-2105, 2010. [13] P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons,” J. Opt. Soc. Am., vol. 44, pp. 761-765, 1954. [14] A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjanczyk and M. Vachon, “High resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett., vol. 38, pp. 706-708 (2013). [15] K. Takada, H. Aoyagi, and K. Okamoto, “Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme,” Opt. Lett., vol. 36, pp. 1044-1046, 2011. [16] P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers” Opt. Lett., vol. 35, pp. 2526-2528, 2010. [17] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions”, Numerische Mathematik, vol. 14, pp. 403-420, 1970. [18] A. S. Filler, “Apodization and Interpolation in Fourier-transform spectroscopy”, J. Opt. Soc. Am. vol. 54, pp. 762-767, 1964.
dspace.entity.typePublication
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoverye2846481-608d-43dd-a835-d70f73a4dd48

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CalvoML128.pdf
Size:
558.58 KB
Format:
Adobe Portable Document Format