High Resolution Fourier-Transform Microspectroscopy Based on Spiral Silicon Waveguides
dc.book.title | 2013 15th International Conference On Transparent Optical Networks (ICTON 2013) | |
dc.contributor.author | Florjańczyk, Miroslaw | |
dc.contributor.author | Villafranca Velasco, Aitor | |
dc.contributor.author | Cheben, Pavel | |
dc.contributor.author | Calvo Padilla, María Luisa | |
dc.contributor.author | Bock, Przemek J. | |
dc.contributor.author | Delâge, André | |
dc.contributor.author | Schmid, Jens H. | |
dc.contributor.author | Lapointe, Jean | |
dc.contributor.author | Janz, Siegfried | |
dc.contributor.author | Xu, Dan-Xia | |
dc.contributor.author | Vachon, Martin | |
dc.date.accessioned | 2023-06-19T15:54:14Z | |
dc.date.available | 2023-06-19T15:54:14Z | |
dc.date.issued | 2013 | |
dc.description | ©2013 IEEE. Financial support from the National Research Council and the Spanish Ministry of Economy is acknowledged under grants TEC2008-04105 and TEC2011-23629. International Conference on Transparent Optical Networks (ICTON) (15ª. 2003. Cartagena, España). | |
dc.description.abstract | We report a spatial heterodyne Fourier-transform spectrometer consisting of an array of Mach-Zehnder interferometers (MZI) implemented in silicon microphotonics. Optical path differences between the MZI arms increase linearly along the array, generating a wavelength-dependent interferogram which enables the retrieval of the source spectrum with a single measurement. Optical delays were implemented with Si-wire waveguides arranged in tightly coiled spirals to achieve a high resolution in a reduced footprint. Our spectral retrieval algorithm compensates phase and amplitude errors arising from fabrication imperfections by using a transformation matrix based on the calibration data. A wavelength resolution of 40 pm within a free spectral range of 0.75 nm is demonstrated. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | National Research Council, Canadá | |
dc.description.sponsorship | Ministerio de Economía, España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25299 | |
dc.identifier.doi | 10.1109/ICTON.2013.6602863 | |
dc.identifier.isbn | 978-1-4799-0683-3 | |
dc.identifier.officialurl | http://dx.doi.org/10.1109/ICTON.2013.6602863 | |
dc.identifier.relatedurl | http://ieeexplore.ieee.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/35683 | |
dc.language.iso | eng | |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc. | |
dc.relation.projectID | TEC2008-04105 | |
dc.relation.projectID | TEC2011-23629 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Spatial Heterodyne Spectrometer | |
dc.subject.keyword | On-Insulator | |
dc.subject.keyword | Grating Demultiplexer | |
dc.subject.keyword | Chip | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | High Resolution Fourier-Transform Microspectroscopy Based on Spiral Silicon Waveguides | |
dc.type | book part | |
dcterms.references | [1] P. Cheben, "Wavelength dispersive planar waveguide devices: Echelle gratings and arrayed waveguide gratings," in Optical Waveguides: From Theory to Applied Technologies, Eds. M. L. Calvo and V. Laksminarayanan, Chapter 5, CRC Press, London, 2007. [2] P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides,” Opt. Express, vol. 15, pp. 2299-2306, 2007. [3] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P.A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett., vol. 16, pp. 503–505, 2004. [4] J. Brouckaert, W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol., vol. 25, pp. 1269–1275, 2007. [5] T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue and H. Takahasi, “Lattice-form CWDM interleave filter using silica-based planar lightwave circuit”, IEEE Photon. Technol. Lett., vol. 18, pp. 1570-1572, 2006. [6] F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express, vol. 15, pp. 11934–11941, 2007. [7] P. Bock, P. Cheben, J. Schmid, A. V. Velasco, A. Delâge, S. Janz, D.-X. Xu, J. Lapointe, T. J. Hall and M. L. Calvo, “Demonstration of a curved sidewall grating demultiplexer on silicon”, Opt. Express, vol. 20, pp. 19882-19892, 2012. [8] A. V. Velasco, P. J. Bock, P. Cheben, M. L. Calvo, J. H. Schmid, J. Lapointe, D.-X. Xu, S. Janz and A. Delâge, “Bandpass filter implemented with blazed waveguide sidewall gratings in silicon-on-insulator”, Electron. Lett., vol. 48, pp. 715-717, 2012. [9] P. Cheben, I. Powell, S. Janz, and D.-X. Xu, “Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett., vol. 30, pp. 1824-1826, 2005. [10] M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D. X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,“ Opt. Express, vol. 15, pp. 18176-18178, 2007. [11] J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “A spatial heterodyne spectrometer for remote sensing of earth middle atmosphere” Appl. Opt., vol. 41, pp. 1343-1345, 2002. [12] K. Okamoto, H. Aoyagi, and K. Takada, “Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide,” Opt. Lett., vol. 35, pp. 2103-2105, 2010. [13] P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons,” J. Opt. Soc. Am., vol. 44, pp. 761-765, 1954. [14] A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjanczyk and M. Vachon, “High resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett., vol. 38, pp. 706-708 (2013). [15] K. Takada, H. Aoyagi, and K. Okamoto, “Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme,” Opt. Lett., vol. 36, pp. 1044-1046, 2011. [16] P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers” Opt. Lett., vol. 35, pp. 2526-2528, 2010. [17] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions”, Numerische Mathematik, vol. 14, pp. 403-420, 1970. [18] A. S. Filler, “Apodization and Interpolation in Fourier-transform spectroscopy”, J. Opt. Soc. Am. vol. 54, pp. 762-767, 1964. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e2846481-608d-43dd-a835-d70f73a4dd48 | |
relation.isAuthorOfPublication.latestForDiscovery | e2846481-608d-43dd-a835-d70f73a4dd48 |
Download
Original bundle
1 - 1 of 1