Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Sierra-Garcia JE, Santos M, Pandit R. Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer. Engineering Applications of Artificial Intelligence. 2022 May 1;111:104769.

Abstract

Wind turbine (WT) pitch control is a challenging issue due to the non-linearities of the wind device and its complex dynamics, the coupling of the variables and the uncertainty of the environment. Reinforcement learning (RL) based control arises as a promising technique to address these problems. However, its applicability is still limited due to the slowness of the learning process. To help alleviate this drawback, in this work we present a hybrid RL-based control that combines a RL-based controller with a proportional–integral–derivative (PID) regulator, and a learning observer. The PID is beneficial during the first training episodes as the RL based control does not have any experience to learn from. The learning observer oversees the learning process by adjusting the exploration rate and the exploration window in order to reduce the oscillations during the training and improve convergence. Simulation experiments on a small real WT show how the learning significantly improves with this control architecture, speeding up the learning convergence up to 37%, and increasing the efficiency of the intelligent control strategy. The best hybrid controller reduces the error of the output power by around 41% regarding a PID regulator. Moreover, the proposed intelligent hybrid control configuration has proved more efficient than a fuzzy controller and a neuro-control strategy.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections