Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorPandit, Ravi
dc.date.accessioned2024-09-13T13:53:48Z
dc.date.available2024-09-13T13:53:48Z
dc.date.issued2022
dc.description.abstractWind turbine (WT) pitch control is a challenging issue due to the non-linearities of the wind device and its complex dynamics, the coupling of the variables and the uncertainty of the environment. Reinforcement learning (RL) based control arises as a promising technique to address these problems. However, its applicability is still limited due to the slowness of the learning process. To help alleviate this drawback, in this work we present a hybrid RL-based control that combines a RL-based controller with a proportional–integral–derivative (PID) regulator, and a learning observer. The PID is beneficial during the first training episodes as the RL based control does not have any experience to learn from. The learning observer oversees the learning process by adjusting the exploration rate and the exploration window in order to reduce the oscillations during the training and improve convergence. Simulation experiments on a small real WT show how the learning significantly improves with this control architecture, speeding up the learning convergence up to 37%, and increasing the efficiency of the intelligent control strategy. The best hybrid controller reduces the error of the output power by around 41% regarding a PID regulator. Moreover, the proposed intelligent hybrid control configuration has proved more efficient than a fuzzy controller and a neuro-control strategy.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-Garcia JE, Santos M, Pandit R. Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer. Engineering Applications of Artificial Intelligence. 2022 May 1;111:104769.
dc.identifier.doidoi.org/10.1016/j.engappai.2022.104769
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108134
dc.issue.number104769
dc.journal.titleEngineering Applications of Artificial Intelligence
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDMCI/AEI/FEDER Project number RTI2018-094902-B-C21.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordIntelligent control
dc.subject.keywordReinforcement learning
dc.subject.keywordLearning observer
dc.subject.keywordPitch control
dc.subject.keywordWind turbines
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleWind turbine pitch reinforcement learning control improved by PID regulator and learning observer
dc.typejournal article
dc.volume.number111
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EAAI 2022 WT.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format

Collections