Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Big Data and cycling

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor and Francis
Citations
Google Scholar

Citation

Romanillos, Gustavo, Martin Zaltz Austwick, Dick Ettema, y Joost De Kruijf. «Big Data and Cycling». Transport Reviews 36, n.o 1 (2 de enero de 2016): 114-33. https://doi.org/10.1080/01441647.2015.1084067.

Abstract

Big Data has begun to create significant impacts in urban and transport planning. This paper covers the explosion in data-driven research on cycling, most of which has occurred in the last ten years. We review the techniques, objectives and findings of a growing number of studies we have classified into three groups according to the nature of the data they are based on: GPS data (spatio-temporal data collected using the global positioning system (GPS)), live point data and journey data. We discuss the movement from small-scale GPS studies to the ‘Big GPS’ data sets held by fitness and leisure apps or specific cycling initiatives, the impact of Bike Share Programmes (BSP) on the availability of timely point data and the potential of historical journey data for trend analysis and pattern recognition. We conclude by pointing towards the possible new insights through combining these data sets with each other – and with more conventional health, socio-demographic or transport data.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections