Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Big Data and cycling

dc.contributor.authorRomanillos Arroyo, Gustavo
dc.contributor.authorZaltz-Austwick, Martin
dc.contributor.authorEttema, Dick
dc.contributor.authorKruijf, Joost De
dc.date.accessioned2024-02-09T09:03:46Z
dc.date.available2024-02-09T09:03:46Z
dc.date.issued2015
dc.description.abstractBig Data has begun to create significant impacts in urban and transport planning. This paper covers the explosion in data-driven research on cycling, most of which has occurred in the last ten years. We review the techniques, objectives and findings of a growing number of studies we have classified into three groups according to the nature of the data they are based on: GPS data (spatio-temporal data collected using the global positioning system (GPS)), live point data and journey data. We discuss the movement from small-scale GPS studies to the ‘Big GPS’ data sets held by fitness and leisure apps or specific cycling initiatives, the impact of Bike Share Programmes (BSP) on the availability of timely point data and the potential of historical journey data for trend analysis and pattern recognition. We conclude by pointing towards the possible new insights through combining these data sets with each other – and with more conventional health, socio-demographic or transport data.eng
dc.description.departmentDepto. de Geografía
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationRomanillos, Gustavo, Martin Zaltz Austwick, Dick Ettema, y Joost De Kruijf. «Big Data and Cycling». Transport Reviews 36, n.o 1 (2 de enero de 2016): 114-33. https://doi.org/10.1080/01441647.2015.1084067.
dc.identifier.doi10.1080/01441647.2015.1084067
dc.identifier.essn1464-5327
dc.identifier.issn0144-1647
dc.identifier.officialurlhttps://doi.org/10.1080/01441647.2015.1084067
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100723
dc.issue.number1
dc.journal.titleTransport Reviews
dc.language.isoeng
dc.page.final133
dc.page.initial114
dc.publisherTaylor and Francis
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/611307
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordCycling
dc.subject.keywordBig data
dc.subject.keywordBike mobility
dc.subject.keywordBikeshare
dc.subject.keywordSpatial analysis
dc.subject.keywordGPS
dc.subject.ucmCiencias Sociales
dc.subject.unesco54 Geografía
dc.titleBig Data and cycling
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication7af12201-dd9c-4deb-8f3e-16bacc43e6dd
relation.isAuthorOfPublication.latestForDiscovery7af12201-dd9c-4deb-8f3e-16bacc43e6dd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Big_Data_and_Cycling.pdf
Size:
352.79 KB
Format:
Adobe Portable Document Format

Collections