Multiseries Lie-groups and asymptotic modules for characterizing and solving integrable models
dc.contributor.author | Jaulent, Marcel | |
dc.contributor.author | Manna, Miguel A. | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.date.accessioned | 2023-06-20T20:12:24Z | |
dc.date.available | 2023-06-20T20:12:24Z | |
dc.date.issued | 1989-08 | |
dc.description | ©1989 American Institute of Physics. M. M. and L. M. A. wish to thank Professor P. C. Sabatier and the Laboratoire de Physique Mathematique de Montpellier for their warm hospitality. | |
dc.description.abstract | A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and (j problems. When MSIM's are written in terms of the "group coordinates," some of them can be "contracted" into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1 )-dimensional evolution equations and of quite strong differential constraints. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34521 | |
dc.identifier.doi | 10.1063/1.528251 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.528251 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59833 | |
dc.issue.number | 8 | |
dc.journal.title | Journal of mathematical physics | |
dc.language.iso | eng | |
dc.page.final | 1673 | |
dc.page.initial | 1662 | |
dc.publisher | American Institute of Physics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Multiseries Lie-groups and asymptotic modules for characterizing and solving integrable models | |
dc.type | journal article | |
dc.volume.number | 30 | |
dcterms.references | 1. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985). 2. A. O. Reyman, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131, 118 (1983), translated in J. Sov. Math. 30, 2319 (1985). 3. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987). 4. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53, 294 (1974). 5. M. Mulase, Adv. Math. 54, 57 (1984). 6. 0. Segal and O. Wilson, Publ. Math. de I'IHES 61, 1 (1985). 7. R. Beals and R. R. Coifman, seminaire Ooulaouic- Meyer-Schwartz 1980-81, expo 22, Ecole Polytechnique, Palaiseau; Physica D 18, 242 (1986); M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, Stud. Appl. Math. 69, 135 (1983). 8. V. E. Zakharov and S. Y. Manakov, Funct. Anal. Appl. 19, 89 (1985). 9. M. Jaulent, M. Manna, and L. Martínez Alonso, (a) Inverse Prob. 4, 123 (1988); (b) J. Phys. A 21, L 1019 (1988); (c) Phys. Lett. A 132, 414 (1988); (d) J. Phys. A 22, L 13 (1989); (e) Phys. Lett. A 135, 438 (1989); (f) J. Phys. A 21, L719 (1988); (g) "Asymptotic modules for solving integrable models," to appear in Inverse Prob. 10. M. Jaulent and M. Manna, (a) Inverse Problems with Interdisciplinary Applications, edited by P. C. Sabatier (Academic, New York, 1987); pp. 429--444; (b) J. Math. Phys. 28, 2338 (1987); (c) Phys. Lett. A 117, 62 (1986); (d) Inverse Prob. 2, L35 (1986); (e) 3, L13 (1987); (f) Eur- ophys. Lett. 2, 891 (1986). 11. I. M. Krichever, Russ. Math. Surveys 32,185 (1977); G. Wilson, Philos. Trans. R. Soc. London Ser. A 314,393 (1985). 12. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13,166 (1979). 13. A. G. Reyman and M. A. Semenov-Tian-Shansky, Invent. Math. 54, 81 (1979); 63, 423 (1981). 14. V. G. Drinfeld, Sov. Math. Dokl. 27, 68 (1982). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinezalonso74libre.pdf
- Size:
- 987.66 KB
- Format:
- Adobe Portable Document Format