Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Well posedness and numerical solution of kinetic models for angiogenesis

dc.book.titleProceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones. XVI Congreso de Matemática Aplicada
dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorCebrián, Elena
dc.contributor.authorDuro, Gema
dc.date.accessioned2023-06-17T10:12:01Z
dc.date.available2023-06-17T10:12:01Z
dc.date.issued2021
dc.descriptionCoordinadores: Rafael Gallego, Mariano Mateos (2021), Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones / XVI Congreso de Matemática Aplicada. Universidad de Oviedo.
dc.description.abstractAngiogenesis processes including the effect of stochastic branching and spread of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker-Planck type with a diffusion equation for the angiogenic factor. Well posedness studies underline the importance of preserving positivity when constructing approximate solutions. We devise order one positivity preserving schemes for a reduced model and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. Higher order positivity preserving schemes can be devised combining WENO and SSP procedures.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69489
dc.identifier.isbn9788418482212
dc.identifier.officialurlhttps://digibuo.uniovi.es/dspace/handle/10651/59045
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8839
dc.language.isoeng
dc.page.final113
dc.page.initial109
dc.page.total360
dc.publisherUniversidad de Oviedo
dc.relation.projectIDMTM2017-84446-C2-1-R
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu519.8
dc.subject.keywordKinetic equations
dc.subject.keywordDifussion equations
dc.subject.keywordPositivity preserving schemes
dc.subject.keywordStochastic models
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleWell posedness and numerical solution of kinetic models for angiogenesisen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
carpio_wellposednessandnumerical.pdf
Size:
749.43 KB
Format:
Adobe Portable Document Format