Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Well posedness and numerical solution of kinetic models for angiogenesis

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Oviedo
Citations
Google Scholar

Citation

Abstract

Angiogenesis processes including the effect of stochastic branching and spread of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker-Planck type with a diffusion equation for the angiogenic factor. Well posedness studies underline the importance of preserving positivity when constructing approximate solutions. We devise order one positivity preserving schemes for a reduced model and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. Higher order positivity preserving schemes can be devised combining WENO and SSP procedures.

Research Projects

Organizational Units

Journal Issue

Description

Coordinadores: Rafael Gallego, Mariano Mateos (2021), Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones / XVI Congreso de Matemática Aplicada. Universidad de Oviedo.

Keywords