Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A bipolar knowledge representation model to improve supervised fuzzy classification algorithms.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer-Verlag
Citations
Google Scholar

Citation

Villarino, G., Gómez, D., Rodríguez, J.T., Montero, J.: A bipolar knowledge representation model to improve supervised fuzzy classification algorithms. Soft Comput. 22, 5121-5146 (2018). https://doi.org/10.1007/s00500-018-3320-9

Abstract

Most supervised classification algorithms produce a soft score (either a probability, a fuzzy degree, a possibility, a cost, etc.) assessing the strength of the association between items and classes. After that, each item is assigned to the class with the highest soft score. In this paper, we show that this last step can be improved through alternative procedures more sensible to the available soft information. To this aim, we propose a general fuzzy bipolar approach that enables learning how to take advantage of the soft information provided by many classification algorithms in order to enhance the generalization power and accuracy of the classifiers. To show the suitability of the proposed approach, we also present some computational experiences for binary classification problems, in which its application to some well-known classifiers as random forest, classification trees and neural networks produces a statistically significant improvement in the performance of the classifiers.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections