Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A bipolar knowledge representation model to improve supervised fuzzy classification algorithms.

dc.contributor.authorVillarino, Guillermo
dc.contributor.authorGómez González, Daniel
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-17T22:32:24Z
dc.date.available2023-06-17T22:32:24Z
dc.date.issued2018
dc.description.abstractMost supervised classification algorithms produce a soft score (either a probability, a fuzzy degree, a possibility, a cost, etc.) assessing the strength of the association between items and classes. After that, each item is assigned to the class with the highest soft score. In this paper, we show that this last step can be improved through alternative procedures more sensible to the available soft information. To this aim, we propose a general fuzzy bipolar approach that enables learning how to take advantage of the soft information provided by many classification algorithms in order to enhance the generalization power and accuracy of the classifiers. To show the suitability of the proposed approach, we also present some computational experiences for binary classification problems, in which its application to some well-known classifiers as random forest, classification trees and neural networks produces a statistically significant improvement in the performance of the classifiers.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/48330
dc.identifier.citationVillarino, G., Gómez, D., Rodríguez, J.T., Montero, J.: A bipolar knowledge representation model to improve supervised fuzzy classification algorithms. Soft Comput. 22, 5121-5146 (2018). https://doi.org/10.1007/s00500-018-3320-9
dc.identifier.doi10.1007/s00500-018-3320-9
dc.identifier.issn1432-7643
dc.identifier.officialurlhttps//doi.org/10.1007/s00500-018-3320-9
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00500-018-3320-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18618
dc.journal.titleSoft Computing
dc.language.isoeng
dc.page.final26
dc.page.initial1
dc.publisherSpringer-Verlag
dc.relation.projectIDTIN2015-66471-P
dc.relation.projectID2015/06202
dc.rights.accessRightsrestricted access
dc.subject.cdu519.21
dc.subject.keywordSupervised classification models
dc.subject.keywordBipolar models
dc.subject.keywordMachine learning
dc.subject.keywordSoft information
dc.subject.ucmProbabilidades (Matemáticas)
dc.titleA bipolar knowledge representation model to improve supervised fuzzy classification algorithms.en
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero282.pdf
Size:
656.07 KB
Format:
Adobe Portable Document Format

Collections