Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

1/f noise and very high spectral rigidity

dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorRetamosa Granado, Joaquín
dc.contributor.authorFaleiro, E.
dc.contributor.authorMolina, R. A.
dc.contributor.authorZuker, A. P.
dc.date.accessioned2023-06-20T10:49:10Z
dc.date.available2023-06-20T10:49:10Z
dc.date.issued2006-02
dc.description©2006 The American Physical Society. This work is supported in part by Spanish Government Grants No. BFM2003-04147 and No. FTN2003-08337-C04-04.
dc.description.abstractAbstract: It was recently pointed out that the spectral fluctuations of quantum systems are formally analogous to discrete time series, and therefore their structure can be characterized by the power spectrum of the signal. Moreover, it is found that the power spectrum of chaotic spectra displays a 1/f behavior, while that of regular systems follows a 1/f(2) law. This analogy provides a link between the concepts of spectral rigidity and antipersistence. Trying to get a deeper understanding of this relationship, we have studied the correlation structure of spectra with high spectral rigidity. Using an appropriate family of random Hamiltonians, we increase the spectral rigidity up to hindering completely the spectral fluctuations. Analyzing the long range correlation structure a neat power law 1/f has been found for all the spectra, along the whole process. Therefore, 1/f noise is the characteristic fingerprint of a transition that, preserving the scale-free correlation structure, hinders completely the fluctuations of the spectrum.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Government
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27722
dc.identifier.doi10.1103/PhysRevE.73.026204
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.73.026204
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51281
dc.issue.number2
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDBFM2003-04147
dc.relation.projectIDFTN2003-08337-C04-04
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu536
dc.subject.keywordStatistical Theory
dc.subject.keywordComplex Systems
dc.subject.keywordEnergy Levels
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.title1/f noise and very high spectral rigidity
dc.typejournal article
dc.volume.number73
dcterms.references[1] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356, 375 (1977). [2] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [3] H. J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge, U.K., 1999). [4] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998). [5] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [6] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [7] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005); M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005). [8] P. Leboeuf, A. G. Monastra, and O. Bohigas, Regular Chaotic Dyn. 6, 205 (2001). [9] M. Krbalek, P. Seba, and P. Wagner, Phys. Rev. E 64, 066119 (2001). [10] R. A. Molina, A. P. Zuker, A. Relaño, and J. Retamosa, Phys. Rev. C 71, 064317 (2005). [11] M. L. Mehta, Random Matrices (Academic, New York, 1991). [13] J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1996). [14] F. M. Izrailev, Phys. Lett. A 134, 13 (1988). [15] R. Scharf and F. M. Izrailev, J. Phys. A 23, 963 (1990). [16] F. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 157 (1962).
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano39libre.pdf
Size:
97.92 KB
Format:
Adobe Portable Document Format

Collections