Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Can we retrieve information from quantum thermalized states?

dc.contributor.authorLóbez, C. M.
dc.contributor.authorRelaño Pérez, Armando
dc.date.accessioned2023-06-16T14:17:24Z
dc.date.available2023-06-16T14:17:24Z
dc.date.issued2021-08
dc.description© 2021 IOP Publishing Ltd and SISSA Medialab srl. This work has been supported by the Spanish Grant No. PGC2018-094180-B-I00 (MCIU/AEI/FEDER, EU). A R acknowledges A L Corps for his critical review of the manuscript.
dc.description.abstractWe propose a protocol to prepare thermalized states storing relevant amounts of information about their past, and we study their resilience and the conditions under which we can profit from them. This protocol is based on the existence of an integrable stage in the preparation process, which makes it possible to record these amounts of information in the expected value of the corresponding integral of motion. By means of numerical calculations on the paradigmatic Dicke model, we show that it is possible to lead a quantum system onto a highly chaotic region, in which the eigenstate thermalization hypothesis is fulfilled and hence we find thermalization, without erasing this information. Notwithstanding, we also propose the existence of a quantum mechanism that mimics the high sensitivity to the initial conditions, the trademark of classical chaos, and thus constitutes a powerful tool for information erasure. Its efficiency is rapidly increased with the number of particles, and hence the proposed protocol is only applicable to small quantum systems. It is induced by avoided level crossings in the transition from integrability to chaos, and it is switched on when the system goes through this transition with finite rapidity. We also show that the same mechanism contributes to hide this information from equilibrium measurements when the system follows the same path in the adiabatic limit.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/68785
dc.identifier.doi10.1088/1742-5468/ac0ede
dc.identifier.issn1742-5468
dc.identifier.officialurlhttps://doi.org/10.1088/1742-5468/ac0ede
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4540
dc.issue.number8
dc.journal.titleJournal of statistical mechanics : theory and experiment
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.projectIDPGC2018-094180-B-I00
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordPhase-transition
dc.subject.keywordStatistical-mechanics
dc.subject.keywordDynamics
dc.subject.keywordSystems
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleCan we retrieve information from quantum thermalized states?
dc.typejournal article
dc.volume.number2021
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relaño68pospr.(emb.20-08-2022).pdf
Size:
360.51 KB
Format:
Adobe Portable Document Format

Collections