Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rings of differentiable semialgebraic functions

dc.contributor.authorBaro González, Elías
dc.contributor.authorFernando, José
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-17T13:19:37Z
dc.date.available2023-06-17T13:19:37Z
dc.date.issued2018
dc.description.abstractIn this work we analyze the main properties of the Zariski and maximal spectra of a ring S^r(M) of differentiable semialgebraic functions of class C^r on a semialgebraic subset M of R^m where R denotes the field of real numbers. Denote S^0(M) the ring of semialgebraic functions on M that admit a continuous extension to an open semialgebraic neighborhood of M in Cl(M), which is the real closure of S^r(M) . Despite S^r(M) it is not real closed for r>0, the Zariski and maximal spectra are homeomorphic to the corresponding ones of the real closed ring S^0(M). Moreover, we show that the quotients of S^r(M) by its prime ideals have real closed fields of fractions, so the ring S^r(M) is close to be real closed. The equality between the spectra of S^r(M) and S^0(M) guarantee that the properties of these rings that depend on such spectra coincide. For instance the ring S^r(M) is a Gelfand ring and its Krull dimension is equal to dim(M). If M is locally compact, the ring S^r(M) enjoys a Nullstellensatz result and Lojasiewicz inequality. We also show similar results for the ring of differentiable bounded semialgebraic functions.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/51183
dc.identifier.citationBaro, E., José F. Fernando, y J. M. Gamboa. «Rings of Differentiable Semialgebraic Functions». Selecta Mathematica 30, n.o 4 (septiembre de 2024): 71. https://doi.org/10.1007/s00029-024-00965-z.
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13084
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.cdu512
dc.subject.cdu515.1
dc.subject.keywordÁlgebra
dc.subject.keywordTopología
dc.subject.keywordGeometría
dc.subject.keywordSemialgebraic compactification
dc.subject.keywordReal closed ring
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmÁlgebra
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco12 Matemáticas
dc.subject.unesco1201 Álgebra
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleRings of differentiable semialgebraic functions
dc.typejournal article
dcterms.referencesC. Andradas, L. Bröcker, Ludwig, J. Ruiz: Constructible sets in real geometry. Ergebnisse der Mathe-matik und ihrer Grenzgebiete (3) 33, Springer-Verlag, Berlin (1996). M.F. Atiyah, I.G. Macdonald: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969). M. Aschenbrenner, A. Thamrongthanyalak: Whitney’s extension problem in o-minimal structures. Preprint (2017). http://www.math.ucla.edu/∼matthias/pdf/Whitney.pdf R. Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions. Bull. Soc. Math. France 98 (1970), 253–295. J. Bochnak, M. Coste, M.-F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin (1998). E. Baro, J.F. Fernando, J.M. Ruiz: Approximation on Nash sets with monomial singularities. Adv. Math. 262 (2014), 59–114. N. Carral, M. Coste: Normal spectral spaces and their dimensions. J. Pure Appl. Algebra 30 (1983) 227–235. G.L. Cherlin, M.A. Dickmann: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126 (1986), no. 2, 147–183. G.L. Cherlin, M.A. Dickmann: Real closed rings. II. Model theory. Ann. Pure Appl. Logic 25 (1983), no.3, 213–231. M. Coste, M.F. Roy: La topologie du spectre r´eel. Ordered fields and real algebraic geometry, Contemp. Math., 8 (1982), 27–59. M. Coste, J.M. Ruiz, M. Shiota, Global problems on Nash functions. Rev. Mat. Complut. 17 (2004), no.1, 83–115. H. Delfs, M. Knebusch: Separation, Retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47–71. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Lecture Notes in Mathematics, 1173. Springer- Verlag, Berlin (1985). G. Efroymson: The extension theorem for Nash functions. Real algebraic geometry and quadratic forms (Rennes, 1981), pp. 343–357, Lecture Notes in Math., 959, Springer, Berlin-New York (1982). C. Fefferman: Whitney’s Extension Problem for Cm. Ann. of Math. 164 (2006), no. 1, 313–359. Whitney’s extension problems and interpolation of data. Bull. Amer. Math. Soc. 46 (2009), no. 2, 207– 220. fe1 [Fe1] J.F. Fernando: On chains of prime ideals in rings of semialgebraic functions. Q. J. Math. 65 (2014), no. 3, 893–930. J.F. Fernando: On the substitution theorem for rings of semialgebraic functions. J. Inst. Math. Jussieu 14 (2015), no. 4, 857–894. J.F. Fernando: On the size of the fibers of spectral maps induced by semialgebraic embeddings. Math.Nachr. 289 (2016), no. 14-15, 1760–1791. J.F. Fernando, J.M. Gamboa: On open and closed morphism between semialgebraic sets. Proc. Amer.Math. Soc. 140 (2012), no. 4, 1207–1219. J.F. Fernando, J.M. Gamboa: On the irreducible components of a semialgebraic set. Internat. J. Math.23 (2012), no. 4, 1250031 J.F. Fernando, J.M. Gamboa: On the spectra of rings of semialgebraic functions. Collect. Math. 63 (2012), no. 3, 299–331. J.F. Fernando, J.M. Gamboa: On the semialgebraic Stone–Cˇ ech compactification of a semialgebraic set. Trans. Amer. Math. Soc 364 (2012), no. 7, 3479–3511. J.F. Fernando, J.M. Gamboa: On Lojasiewicz’s inequality and the Nullstellensatz for rings of semialge- braic functions. J. Algebra 399 (2014), 475–488. J.F. Fernando, J.M. Gamboa: On the Krull dimension of rings of continuous semialgebraic functions. Rev. Mat. Iberoam. 31 (2015), no. 3, 753–756. J.F. Fernando, J.M. Gamboa: On the remainder of the semialgebraic Stone-Cech compactification of a semialgebraic set. J. Pure Appl. Algebra 222 (2018), no. 1, 1–18. J.F. Fernando, J.M. Gamboa, J.M. Ruiz: Finiteness problems on Nash manifolds and Nash sets. J. Eur. Math. Soc. (JEMS) 16 (2014) no. 3, 537–570.
dspace.entity.typePublication
relation.isAuthorOfPublication8695b08a-762f-4ef9-ad24-b6fe687ab7cd
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sr-rings-new.pdf
Size:
549.54 KB
Format:
Adobe Portable Document Format

Collections