Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Large N expansions and Painlevé hierarchies in the Hermitian matrix model

dc.contributor.authorÁlvarez Galindo, Gabriel
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T03:31:21Z
dc.date.available2023-06-20T03:31:21Z
dc.date.issued2011-07-15
dc.description© 2011 IOP Publishing Ltd. The financial support of the Universidad Complutense under project GR35/10-A910556, the Comision Interministerial de Ciencia y Tecnología under projects FIS2008-00200 and FIS2008-00209 are gratefully acknowledged.
dc.description.abstractWe present a method to characterize and compute the large N formal asymptotics of regular and critical Hermitian matrix models with general even potentials in the one-cut and two-cut cases. Our analysis is based on a method to solve continuum limits of the discrete string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. This method also leads to an explicit formulation, in terms of coupling constants and critical parameters, of the members of the Painlevé I and Painlevé II hierarchies associated with one-cut and two-cut critical models, respectively.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense
dc.description.sponsorshipComisión Interministerial de Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20402
dc.identifier.doi10.1007/s11069-011-0048-6
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://iopscience.iop.org/1751-8121/44/28/285206/pdf/1751-8121_44_28_285206.pdf
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/1106.0593v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43700
dc.issue.number28
dc.journal.titleJournal of Physics A: Mathematical and Theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDGR35/10-A910556
dc.relation.projectIDFIS2008-00200
dc.relation.projectIDFIS2008-00209
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordDouble Scaling Limit
dc.subject.keywordPartition-Function
dc.subject.keywordQuantum-Gravity
dc.subject.keywordAsymptotics
dc.subject.keywordUniversality
dc.subject.keywordEquations
dc.subject.keywordPolynomials
dc.subject.keywordBehavior
dc.subject.ucmFísica-Modelos matemáticos
dc.titleLarge N expansions and Painlevé hierarchies in the Hermitian matrix model
dc.typejournal article
dc.volume.number44
dcterms.references[1] Fokas, A.S., Its, A.R. and Kitaev, A., 1991, Commun. Math. Phys. 2, 313–44. [2] Fokas, A.S., Its, A.R. and Kitaev, A., 1992, Commun. Math. Phys. 2, 395–430. [3] Deift, P., 1999, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach (Providence, RI: American Mathematical Society). [4] Deift, P., Kriecherbauer, T., McLaughlin, K.T.R., Venakides, S. and Zhou, X., 1999,Commun. Pure Appl. Math.52, 1335–425. [5] Bleher, P., 2008, Lectures on Random Matrix Models: The Riemann–Hilbert Approach (Amsterdam: North-Holland). [6] Martínez Alonso, L. and Medina, E., 2009, J. Phys. A: Math. Theor. 42, 205204. [7] Di Francesco, P., Ginsparg, P. and Zinn-Justin, J., 1995, Phys. Rep. 254, 1–133. [8] Brezin, E., Itzykson, C., Parisi, G. and Zuber, J.B., 1978, Commun. Math. Phys. 59, 35–51. [9] Bessis, D., 1979, Commun. Math. Phys. 69, 147–63. [10] Bessis, D., Itzykson, C. and Zuber, J.B., 1980, Adv. Appl. Math. 1, 109–57. [11] Ercolani, N.M. and McLaughlin, K.D.T.R., 2003, Int. Math. Res. Not. 14, 755–820. [12] Bleher, P.M. and Its, A.R., 2005, Ann. Inst. Fourier (Grenoble) 55, 1943–2000 (available at: http://aif.cedram.org/cedram-bin/article/AIF_2005__55_6_1943_0.pdf). [13] Bonnet, G., David, F. and Eynard, B., 2000, J. Phys. A: Math. Gen. 33, 6739–68. [14] Eynard, B., 2009, J. High Energy Phys. JHEP03(2009)003. [15] Di Francesco, P., Mathieu, P. and Sénéchal, D., 1997, Conformal Field Theory (New York: Springer). [16] Bergére, M. and Eynard, B., 2009, arXiv:0909.0854. [17] Marchal, O. and Caffaso, M., 2010, arXiv:1002.3347. [18] Kudryashov, N.A., 2003, J. Math. Phys. 44, 6160–78. [19] Demeterfi, K., Deo, N., Jain, S. and Tan, C.I., 1990, Phys. Rev. D 42, 4105–22. [20] Bleher, P. and Its, A., 1999, Ann. Math. 150, 185–266. [21] Bleher, P. and Eynard, B., 2003, J. Phys. A: Math. Gen. 36, 3085–105. [22] Bleher, P. and Its, A., 2003, Commun. Pure Appl. Math. 56, 433–516. [23] Martínez Alonso, L. and Medina, E., 2007, J. Phys. A: Math. Theor. 40, 14223–41. [24] Martínez Alonso, L. and Medina, E., 2008, J. Phys. A: Math. Theor. 41, 335202. [25] Álvarez, G., Martínez Alonso, L. and Medina, E., 2010, J. Stat. Mech. P03023. [26] Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A. and Orlov, A., 1991, Nucl. Phys. B 357, 565–618. [27] Kuijlaars, A.B.J., and McLaughlin, K.D., 2000, Commun. Pure Appl. Math. 53, 736–85. [28] Brézin, E., Marinari, E., and Parisi, G., 1990, Phys. Lett. B 242, 35–8. [29] Darboux, G., 1915, Lecons Sur la Theorie General des Surfaces II (Paris: Gauthier-Villars), [30] Eynard, B., 2006, J. Stat. Mech. P07005. [31] Claeys, T., 2008, Int. Math. Res. Not. 2008, rnm166.
dspace.entity.typePublication
relation.isAuthorOfPublication93e2c5ce-9576-43ad-99af-1f18cb650636
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery93e2c5ce-9576-43ad-99af-1f18cb650636

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
alvarez04.pdf
Size:
434.76 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
alvarez04preprint.pdf
Size:
327.13 KB
Format:
Adobe Portable Document Format

Collections