Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algèbres de Lie rigides

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1985

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Koninklijke Nederlandse Akademie van Wetenschappen
Citations
Google Scholar

Citation

Abstract

The goal in this article is to give a constructive method describing the n-dimensional rigid Lie algebras μ, with "rigid'' meaning, in the simplest sense, that every Lie algebra law sufficiently close to μ is isomorphic to it. The authors use Lie algebra results obtained by Goze via methods of nonstandard analysis, as well as the following theorem, due to R. Carles : For a law μ in Cn to be rigid, it must possess a semisimple inner derivation with integer eigenvalues. This reduces the problem to the study of a system of roots associated with this adjoint: Various nonrigidity criteria are given by properties of the system. The authors are then able to describe rigid laws both in arbitrary and in small dimensions; an example in C6 is completely illustrated and the 31 solvable rigid laws of dimension 8 are described

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections