Algèbres de Lie rigides

dc.contributor.authorGoze, Michel
dc.contributor.authorAncochea Bermúdez, José María
dc.date.accessioned2023-06-21T02:05:30Z
dc.date.available2023-06-21T02:05:30Z
dc.date.issued1985
dc.description.abstractThe goal in this article is to give a constructive method describing the n-dimensional rigid Lie algebras μ, with "rigid'' meaning, in the simplest sense, that every Lie algebra law sufficiently close to μ is isomorphic to it. The authors use Lie algebra results obtained by Goze via methods of nonstandard analysis, as well as the following theorem, due to R. Carles : For a law μ in Cn to be rigid, it must possess a semisimple inner derivation with integer eigenvalues. This reduces the problem to the study of a system of roots associated with this adjoint: Various nonrigidity criteria are given by properties of the system. The authors are then able to describe rigid laws both in arbitrary and in small dimensions; an example in C6 is completely illustrated and the 31 solvable rigid laws of dimension 8 are described
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21271
dc.identifier.issn0019-3577
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64827
dc.issue.number4
dc.journal.titleIndagationes Mathematicae
dc.page.final415
dc.page.initial397
dc.publisherKoninklijke Nederlandse Akademie van Wetenschappen
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.554.3
dc.subject.keywordrigid Lie algebras
dc.subject.keywordsolvable Lie algebras of dimension eight
dc.subject.keywordnonstandard method
dc.subject.keywordcohomology
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleAlgèbres de Lie rigides
dc.typejournal article
dc.volume.number47
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Collections