Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bearing capacity of steel-caged RC columns under combined bending and axial loads: Estimation based on Artificial Neural Networks

dc.contributor.authorJørgensen, Caroline
dc.contributor.authorGrastveit, Ragnhild
dc.contributor.authorGarzón Roca, Julio
dc.contributor.authorPaya Zaforteza, Ignacio
dc.contributor.authorAdam, José
dc.date.accessioned2024-01-24T19:58:55Z
dc.date.available2024-01-24T19:58:55Z
dc.date.issued2013
dc.description.abstractThe use of steel caging for strengthening a reinforced concrete (RC) column is an economical and common solution. However, the design of the optimum steel cage is a complex task. Artificial Neural Networks (ANN) has shown to be a useful device for engineers to solve tasks related to the modelling and prediction of the behavior of complex engineering problems. This mathematical tool can be trained from a series of inputs in order to obtain a desired output, without the need to reproduce the phenomenon under study. Based on a total of 950 results obtained with a validated finite element (FE) model, this paper presents the use of ANN to predict the axial–bending moment (N–M) interaction diagram of steel-caged RC columns under combined bending and axial loads. The data is arranged in a format of six input parameters taking into account several aspects such as the geometry of the RC column, the size of the steel cage, the concrete compressive strength, the steel yield stress and the axial load level. The output is the bending moment reached by the steel-caged RC column. Since the way of solving the beam–column joint plays a key role in the behavior of the strengthened column, four ANNs are developed in this paper, related to the beam–column connection type: using capitals, using capitals with chemical anchors, using capitals and steel bars, and without any element. The ANNs developed show excellent results, which are far better to those given by three design analytical proposals. Based on the ANNs performed, a simple mathematical expression is developed, which can be used by practitioners when facing the design of a steel-caged RC column subjected to axial loads and bending moments.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipGeneralitat Valenciana
dc.description.statuspub
dc.identifier.citationJørgensen, Caroline, et al. «Bearing Capacity of Steel-Caged RC Columns under Combined Bending and Axial Loads: Estimation Based on Artificial Neural Networks». Engineering Structures, vol. 56, noviembre de 2013, pp. 1262-70. DOI.org (Crossref), https://doi.org/10.1016/j.engstruct.2013.06.039.
dc.identifier.doi10.1016/j.engstruct.2013.06.039
dc.identifier.essn1873-7323
dc.identifier.issn0141-0296
dc.identifier.officialurlhttps://doi.org/10.1016/j.engstruct.2013.06.039
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0141029613003222
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95246
dc.journal.titleEngineering Structures
dc.language.isoeng
dc.page.final1270
dc.page.initial1262
dc.publisherElsevier
dc.relation.projectIDBIA 2008-06268
dc.relation.projectIDGVPRE/2008/153
dc.rights.accessRightsopen access
dc.subject.cdu624.01
dc.subject.keywordRC column
dc.subject.keywordStrengthening
dc.subject.keywordSteel caging
dc.subject.keywordNeural network
dc.subject.keywordBending moment
dc.subject.keywordAxial force
dc.subject.ucmCiencias
dc.subject.unesco3305 Tecnología de la Construcción
dc.titleBearing capacity of steel-caged RC columns under combined bending and axial loads: Estimation based on Artificial Neural Networks
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number56
dspace.entity.typePublication
relation.isAuthorOfPublication014f42c3-23e1-4b7c-be9a-53dedeac0559
relation.isAuthorOfPublication.latestForDiscovery014f42c3-23e1-4b7c-be9a-53dedeac0559

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bearing_capacity_of_steel-caged_RC_columns.docx
Size:
2.2 MB
Format:
Microsoft Word XML

Collections