Strongly consistent autoregressive predictors in abstract Banach spaces
Loading...
Official URL
Full text at PDC
Publication date
2018
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Ruiz-Medina, M. D.; Álvarez-Liébana, J. Strongly consistent autoregressive predictors in abstract Banach spaces. Journal of Multivariate Analysis 2019, 170, 186–201. doi:10.1016/j.jmva.2018.08.001.
Abstract
This work derives new results on strong consistent estimation and prediction for autoregressive processes of order 1 in a separable Banach space B. The consistency results are obtained for the component-wise estimator of the autocorrelation operator in the norm of the space L(B) of bounded linear operators on B. The strong consistency of the associated plug-in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert space constructed in Kuelbs’ lemma (Kuelbs, 1970). A Hilbert–Schmidt embedding introduces the Reproducing Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the Rigged Hilbert space structure. This paper extends the work of Bosq (2000) and Labbas and Mourid (2002).
Description
Supplementary Material to "Strongly-consistent autoregressive predictors in abstract Banach spaces":
https://ars-els-cdn-com.bucm.idm.oclc.org/content/image/1-s2.0-S0047259X17307248-mmc1.pdf