Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strongly consistent autoregressive predictors in abstract Banach spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Ruiz-Medina, M. D.; Álvarez-Liébana, J. Strongly consistent autoregressive predictors in abstract Banach spaces. Journal of Multivariate Analysis 2019, 170, 186–201. doi:10.1016/j.jmva.2018.08.001.

Abstract

This work derives new results on strong consistent estimation and prediction for autoregressive processes of order 1 in a separable Banach space B. The consistency results are obtained for the component-wise estimator of the autocorrelation operator in the norm of the space L(B) of bounded linear operators on B. The strong consistency of the associated plug-in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert space constructed in Kuelbs’ lemma (Kuelbs, 1970). A Hilbert–Schmidt embedding introduces the Reproducing Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the Rigged Hilbert space structure. This paper extends the work of Bosq (2000) and Labbas and Mourid (2002).

Research Projects

Organizational Units

Journal Issue

Description

Supplementary Material to "Strongly-consistent autoregressive predictors in abstract Banach spaces": https://ars-els-cdn-com.bucm.idm.oclc.org/content/image/1-s2.0-S0047259X17307248-mmc1.pdf

Keywords

Collections