Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lorentz and Gale-Ryser theorems on general measure spaces

dc.contributor.authorBoza, Santiago
dc.contributor.authorKřepela, Martin
dc.contributor.authorSoria de Diego, Francisco Javier
dc.date.accessioned2024-03-04T11:39:11Z
dc.date.available2024-03-04T11:39:11Z
dc.date.issued2022-01-01
dc.description.abstractBased on the Gale–Ryser theorem [2, 6], for the existence of suitable (0,1) -matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1017/prm.2021.37
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101901
dc.issue.number4
dc.journal.titleProceedings of the Royal Society of Edinburgh Section A: Mathematics
dc.language.isoeng
dc.publisherCambridge University Press
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordCross-sections
dc.subject.keywordNonincreasing rearrangement
dc.subject.keywordHardy-Littlewood-Póya relation
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleLorentz and Gale-Ryser theorems on general measure spaces
dc.typejournal article
dc.volume.number152
dspace.entity.typePublication
relation.isAuthorOfPublicationb2108ca5-2270-4783-9661-46cd65b31fc3
relation.isAuthorOfPublication.latestForDiscoveryb2108ca5-2270-4783-9661-46cd65b31fc3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BoKrSo-LGR-v2.pdf
Size:
348.8 KB
Format:
Adobe Portable Document Format

Collections