Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Identifying groundwater-dependent ecosystems is the first step towards their protection. This paper presents a machine learning approach that maps groundwater-dependent ecosystems by extrapolating from the characteristics of a small sample of known wetland and non-wetland areas to find other areas with similar geological, hydrological and biotic markers. Explanatory variables for wetland occurrence include topographic elevation, lithology, vegetation vigor, and slope-related variables, among others. Supervised classification algorithms are trained based on the ground truth sample, and their outcomes are checked against an official inventory of groundwater-dependent ecosystems for calibration. This method is illustrated through its application to a UNESCO Biosphere Reserve in central Spain. Support vector machines, tree-based classifiers, logistic regression and k-neighbors classification predicted the presence of groundwater-dependent ecosystems adequately (>96% test and AUC scores). The ensemble mean of the best five classifiers rendered a 90% success rate when computed per surface area. This method can optimize fieldwork during the characterization stage of groundwaterdependent ecosystems, thus contributing to integrate wetland protection in land use planning.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections