Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification
dc.contributor.author | Martínez Santos, Pedro | |
dc.contributor.author | Díaz Alcaide, Silvia | |
dc.contributor.author | Gómez-Escalonilla Canales, Víctor | |
dc.contributor.author | Hera Portillo, África de la | |
dc.date.accessioned | 2023-06-16T14:19:17Z | |
dc.date.available | 2023-06-16T14:19:17Z | |
dc.date.issued | 2021-12 | |
dc.description.abstract | Identifying groundwater-dependent ecosystems is the first step towards their protection. This paper presents a machine learning approach that maps groundwater-dependent ecosystems by extrapolating from the characteristics of a small sample of known wetland and non-wetland areas to find other areas with similar geological, hydrological and biotic markers. Explanatory variables for wetland occurrence include topographic elevation, lithology, vegetation vigor, and slope-related variables, among others. Supervised classification algorithms are trained based on the ground truth sample, and their outcomes are checked against an official inventory of groundwater-dependent ecosystems for calibration. This method is illustrated through its application to a UNESCO Biosphere Reserve in central Spain. Support vector machines, tree-based classifiers, logistic regression and k-neighbors classification predicted the presence of groundwater-dependent ecosystems adequately (>96% test and AUC scores). The ensemble mean of the best five classifiers rendered a 90% success rate when computed per surface area. This method can optimize fieldwork during the characterization stage of groundwaterdependent ecosystems, thus contributing to integrate wetland protection in land use planning. | en |
dc.description.department | Depto. de Geodinámica, Estratigrafía y Paleontología | |
dc.description.faculty | Fac. de Ciencias Geológicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Ministerio de Educación, Formación Profesional y Deportes (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70091 | |
dc.identifier.doi | 10.1016/j.jhydrol.2021.126873 | |
dc.identifier.essn | 1879-2707 | |
dc.identifier.issn | 0022-1694 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jhydrol.2021.126873 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/4671 | |
dc.journal.title | Journal of Hydrology | |
dc.language.iso | eng | |
dc.page.initial | 126873 | |
dc.page.total | 17 | |
dc.publisher | Elsevier | |
dc.relation.projectID | RTI2018-099394-B-I00 | |
dc.relation.projectID | PRX18/00235 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.cdu | 556.3 | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Wetland protection | |
dc.subject.keyword | Groundwater-dependent ecosystems | |
dc.subject.keyword | Wetland management | |
dc.subject.keyword | Big data | |
dc.subject.keyword | Mancha occidental aquifer | |
dc.subject.ucm | Hidrología | |
dc.subject.unesco | 2508 Hidrología | |
dc.title | Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification | en |
dc.type | journal article | |
dc.volume.number | 603 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fe2f5bb2-2318-4316-b695-cfeff52d3e6e | |
relation.isAuthorOfPublication | 15b553b7-1c3c-42b4-b05a-48f39552ad83 | |
relation.isAuthorOfPublication | 5046d68f-5c35-4421-8f9c-1c4c7237d801 | |
relation.isAuthorOfPublication.latestForDiscovery | 15b553b7-1c3c-42b4-b05a-48f39552ad83 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0022169421009239-main.pdf
- Size:
- 22.19 MB
- Format:
- Adobe Portable Document Format