Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification

dc.contributor.authorMartínez Santos, Pedro
dc.contributor.authorDíaz Alcaide, Silvia
dc.contributor.authorGómez-Escalonilla Canales, Víctor
dc.contributor.authorHera Portillo, África de la
dc.date.accessioned2023-06-16T14:19:17Z
dc.date.available2023-06-16T14:19:17Z
dc.date.issued2021-12
dc.description.abstractIdentifying groundwater-dependent ecosystems is the first step towards their protection. This paper presents a machine learning approach that maps groundwater-dependent ecosystems by extrapolating from the characteristics of a small sample of known wetland and non-wetland areas to find other areas with similar geological, hydrological and biotic markers. Explanatory variables for wetland occurrence include topographic elevation, lithology, vegetation vigor, and slope-related variables, among others. Supervised classification algorithms are trained based on the ground truth sample, and their outcomes are checked against an official inventory of groundwater-dependent ecosystems for calibration. This method is illustrated through its application to a UNESCO Biosphere Reserve in central Spain. Support vector machines, tree-based classifiers, logistic regression and k-neighbors classification predicted the presence of groundwater-dependent ecosystems adequately (>96% test and AUC scores). The ensemble mean of the best five classifiers rendered a 90% success rate when computed per surface area. This method can optimize fieldwork during the characterization stage of groundwaterdependent ecosystems, thus contributing to integrate wetland protection in land use planning.en
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70091
dc.identifier.doi10.1016/j.jhydrol.2021.126873
dc.identifier.essn1879-2707
dc.identifier.issn0022-1694
dc.identifier.officialurlhttps://doi.org/10.1016/j.jhydrol.2021.126873
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4671
dc.journal.titleJournal of Hydrology
dc.language.isoeng
dc.page.initial126873
dc.page.total17
dc.publisherElsevier
dc.relation.projectIDRTI2018-099394-B-I00
dc.relation.projectIDPRX18/00235
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu556.3
dc.subject.keywordMachine learning
dc.subject.keywordWetland protection
dc.subject.keywordGroundwater-dependent ecosystems
dc.subject.keywordWetland management
dc.subject.keywordBig data
dc.subject.keywordMancha occidental aquifer
dc.subject.ucmHidrología
dc.subject.unesco2508 Hidrología
dc.titleMapping groundwater-dependent ecosystems by means of multi-layer supervised classificationen
dc.typejournal article
dc.volume.number603
dspace.entity.typePublication
relation.isAuthorOfPublicationfe2f5bb2-2318-4316-b695-cfeff52d3e6e
relation.isAuthorOfPublication15b553b7-1c3c-42b4-b05a-48f39552ad83
relation.isAuthorOfPublication5046d68f-5c35-4421-8f9c-1c4c7237d801
relation.isAuthorOfPublication.latestForDiscovery15b553b7-1c3c-42b4-b05a-48f39552ad83

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022169421009239-main.pdf
Size:
22.19 MB
Format:
Adobe Portable Document Format

Collections