Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unit roots and cointegrating matrix estimation using subspace methods

dc.contributor.authorHiernaux, Alfredo G.
dc.contributor.authorJerez Méndez, Miguel
dc.contributor.authorCasals Carro, José
dc.date.accessioned2023-06-20T16:39:32Z
dc.date.available2023-06-20T16:39:32Z
dc.date.issued2005
dc.description.abstractWe propose a new procedure to detect unit roots based on subspace methods. It has three main original features. First, the same method can be applied to single or multiple time series. Second, it employs a flexible family of information criteria, which loss functions can be adapted to the statistical properties of the data. Last, it does not require the specification of a stochastic process for the series analyzed. Also, we provide a consistent estimator of the cointegrating rank and the cointegrating matrix. Simulation exercises show that the procedure has good finite sample properties. An example illustrates its application to real time series.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/7907
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/56633
dc.issue.number12
dc.language.isoeng
dc.page.total36
dc.publication.placeMadrid
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC15
dc.subject.jelC32
dc.subject.jelC51
dc.subject.jelC87
dc.subject.keywordState-space models
dc.subject.keywordSubspace methods
dc.subject.keywordUnit roots
dc.subject.keywordCointegration
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleUnit roots and cointegrating matrix estimation using subspace methods
dc.typetechnical report
dc.volume.number2005
dcterms.referencesAbuaf, N. and Jorion, P. (1990). Purchasing power parity in the long run. The Journal of Finance, 45:157–174. Akaike, H. (1975). Markovian representation of stochastic processes by canonical variables. SIAM Journal of Control, 13(1):162–173. Akaike, H. (1976). Canonical Correlation Analysis of Time Series and the Use of an Information Criterion. Academic Press. Bauer, D. and Wagner, M. (2002). Estimating cointegrated systems using subspace algorithms. Journal of Econometrics, 111: 47–84. Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco, 2nd ed. edition. Casals, J., Sotoca, S., and Jerez, M. (1999). A fast stable method to compute the likelihood of time invariant state space models. Economics Letters, 65(3):329–337. Chui, C. K. and Chen, G. (1999). Kalman Filtering with Real-Time Applications. Berlin, Springer. Chui, N. L. C. (1997). Subspace Methods and Informative Experiments for System Identification. PhD thesis, Pembroke College Cambridge. Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with unit root. Journal of the American Statistical Association, 74:427–431. Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218. Favoreel, W., De Moor, B., and Van Overschee, P. (2000). Subspace state space system identification for industrial processes. Journal of Process Control, 10:149–155. Flores, R. G., Jorion, P., Preumont, P. Y., and Szafarz, A. (1999). Multivariate unit roots test of ppp hypothesis. Journal of Empirical Finance, 6:335–353. Ho, B. and Kalman, R. (1966). Effective construction of linear state-variable models from input-output functions. Regelungstechnik, 14:545–548. Jenkins, G. M. and Alavi, A. S. (1981). Somes aspects of modelling and forecasting multivariate time series. Journal of Time Series Analysis, 2(1):1–47. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12:231–254. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica, 59:1551–1580. Knudsen, T. (2001). Consistency analysis of subspace identification methods based on linear regression approach. Automatica, 37:81–89. Larimore, W. E. (1983). System identification, reduced-order filtering and modeling via canonical variate analysis. Proceedings of the American Control Conference, ACC, San Francisco, pages 445–451. Larimore, W. E. (1990). Canonical variate analysis in identification, filtering and adaptive control. Proceedings of the 29th Conference on Decision and Control, Hawaii, pages 596–604. Lütkepohl, H. and Poskitt, D. S. (1998). Econometrics in Theory and Practice: Festchrift for Hans SchneeweiB, chapter Consistent Estimation of the Number of Cointegration Relations in a Vector Autorregresive Model, pages 87–100. Springer Verlag. Martín Manjón, R. and Treadway, A. (1997). The fed controls only one of the two interest rates in the u.s. economy. Documento de Trabajo del ICAE, (9716). Peternell, K., Scherrer, W., and Deistler, M. (1996). Statistical analysis of novel subspace identification methods. Signal Processing, 52:161–177. Phillips, P. B. C. and Durlauf, N. S. (1986). Multiple time series regression with integrated process. Review of Economic Studies, 53:473–495. Poskitt, D. S. (2000). Strongly consistent determination of cointegrating rank via canonical correlations. Journal of Business and Economic Statistics, 18:77–90. Riemers, H. E. (1992). Comparison of tests for multivariate cointegration. Statistical Papers, 33:335–359. Sánchez, I. and Peña, D. (2001). Properties of predictors in overdifferenced nearly nonstationary autoregression. Journal of Time Series Analysis, 22(1):45–66. Tiao, G. C. and Box, G. E. P. (1981). Modeling multiple time series with applications. Journal of the American Statistical Association, 76:802–816. Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series. Journal of the Royal Statistical Society, B Series, 51(2):157–213. Toda, H. Y. (1995). Finite sample performance of likelihood ratio tests for cointegrating rank in vector autoregressions. Econometric Theory, 11:1015–1032. Viberg, M. (1995). Subspace-based methods for the identification of the linear time-invariant systems. Automatica, 31(12):1835–1852.
dspace.entity.typePublication
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscoveryfdb804b2-ac97-4a0a-bd74-9414c4b86042

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0512.pdf
Size:
273.49 KB
Format:
Adobe Portable Document Format